Skip to main content

Microglia in the Outer Retina and Their Relevance to Pathogenesis of Age-Related Macular Degeneration

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 723))

Abstract

Age-related macular degeneration (AMD), the largest cause of legal blindness in the elderly in the Western world, is a disease whose pathogenesis is incompletely understood and for which therapeutic challenges remain. The etiology of AMD is thought to involve chronic neuroinflammation of the retina but the details of relevant cellular mechanisms are still not fully understood. Retinal microglia are the primary resident immune cell in the retina and are normally absent from the outer retina, the locus of AMD. Their migration and infiltration into the outer retina under conditions of advanced age and disease implicate their involvement in the neuroinflammatory etiology of AMD. We propose that interactions between microglia and RPE cells in the subretinal space result in significant alterations in the structure and physiology of RPE cells that in turn transforms the environment of the retinochoroidal interface into one conducive for the progression and advancement of AMD. In particular, microglia induce RPE alterations that result in a more chemoattractive, pro-inflammatory, and pro-angiogenic environment that increases the recruitment and activation of immune cells and fosters the growth of neovascular vessels into the retina. Microglia-to-RPE influences may represent a cell–cell interaction that may be targeted for therapeutic strategies to treat and/or prevent AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Augustin AJ, Kirchhof J (2009) Inflammation and the pathogenesis of age-related macular degeneration. Expert Opin Ther Targets 13:641–651

    Article  PubMed  CAS  Google Scholar 

  • Brown DR (2009) Role of microglia in age-related changes to the nervous system. ScientificWorld Journal 9:1061–1071

    Article  PubMed  CAS  Google Scholar 

  • Cohen SY, Dubois L, Tadayoni R et al (2007) Prevalence of reticular pseudodrusen in age-related macular degeneration with newly diagnosed choroidal neovascularisation. Br J Ophthalmol 91:354–359

    Article  PubMed  CAS  Google Scholar 

  • Combadiere C, Feumi C, Raoul W et al (2007) CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 117:2920–2928

    Article  PubMed  CAS  Google Scholar 

  • Donoso LA, Kim D, Frost A et al (2006) The role of inflammation in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 51:137–152

    Article  PubMed  Google Scholar 

  • Ferris FL, Davis MD, Clemons TE et al (2005) A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. Arch Ophthalmol 123:1570–1574

    Article  PubMed  Google Scholar 

  • Friedman DS, O’Colmain BJ, Munoz B et al (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122:564–572

    Article  PubMed  Google Scholar 

  • Green WR (1999) Histopathology of age-related macular degeneration. Mol Vis 5:27

    PubMed  CAS  Google Scholar 

  • Green WR, Key SN, 3 rd (1977) Senile macular degeneration: a histopathologic study. Trans Am Ophthalmol Soc 75:180–254

    PubMed  CAS  Google Scholar 

  • Gupta N, Brown KE, Milam AH (2003) Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res 76:463–471

    Article  PubMed  CAS  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Holtkamp GM, Kijlstra A, Peek R et al (2001) Retinal pigment epithelium-immune system interactions: cytokine production and cytokine-induced changes. Prog Retin Eye Res 20:29–48

    Article  PubMed  CAS  Google Scholar 

  • Klein R, Klein BE, Jensen SC et al (1997) The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 104:7–21

    PubMed  CAS  Google Scholar 

  • Lee JE, Liang KJ, Fariss RN et al (2008) Ex vivo dynamic imaging of retinal microglia using time-lapse confocal microscopy. Invest Ophthalmol Vis Sci 49:4169–4176

    Article  PubMed  Google Scholar 

  • Lucin KM, Wyss-Coray T (2009) Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64:110–122

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Zhao L, Fontainhas AM et al (2009) Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD. PLoS One 4:e7945

    Article  PubMed  Google Scholar 

  • Mousa SA, Mousa SS (2010) Current status of vascular endothelial growth factor inhibition in age-related macular degeneration. BioDrugs 24:183–194

    Article  PubMed  CAS  Google Scholar 

  • Mousa SA, Mousa SS (2010) Current status of vascular endothelial growth factor inhibition in age-related macular degeneration. BioDrugs 24:183–194

    Article  PubMed  CAS  Google Scholar 

  • Provis JM, Diaz CM, Penfold PL (1996) Microglia in humanz retina: a heterogeneous population with distinct ontogenies. Perspect Dev Neurobiol 3:213–222

    PubMed  CAS  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  PubMed  CAS  Google Scholar 

  • Rudolf M, Malek G, Messinger JD et al (2008) Sub-retinal drusenoid deposits in human retina: organization and composition. Exp Eye Res 87:402–408

    Article  PubMed  CAS  Google Scholar 

  • Santos AM, Calvente R, Tassi M et al (2008) Embryonic and postnatal development of microglial cells in the mouse retina. J Comp Neurol 506:224–239

    Article  PubMed  Google Scholar 

  • Sarks JP, Sarks SH, Killingsworth MC (1988) Evolution of geographic atrophy of the retinal pigment epithelium. Eye 2 ( Pt 5):552–577

    Article  PubMed  Google Scholar 

  • Streilein JW, Ma N, Wenkel H et al (2002) Immunobiology and privilege of neuronal retina and pigment epithelium transplants. Vision Res 42:487–495

    Article  PubMed  Google Scholar 

  • Tuo J, Bojanowski CM, Zhou M et al (2007) Murine ccl2/cx3cr1 deficiency results in retinal lesions mimicking human age-related macular degeneration. Invest Ophthalmol Vis Sci 48:3827–3836

    Article  PubMed  Google Scholar 

  • Xu H, Chen M, Forrester JV (2009) Para-inflammation in the aging retina. Prog Retin Eye Res 28:348–368

    Article  PubMed  Google Scholar 

  • Xu H, Chen M, Manivannan A et al (2008) Age-dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice. Aging Cell 7:58–68

    Article  PubMed  CAS  Google Scholar 

  • Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122:598–614

    Article  PubMed  Google Scholar 

  • Zarbin MA, Rosenfeld PJ (2010) Pathway-based therapies for age-related macular degeneration: an integrated survey of emerging treatment alternatives. Retina 30:1350–1367

    Article  PubMed  Google Scholar 

  • Zweifel SA, Spaide RF, Curcio CA et al (2010a) Reticular pseudodrusen are subretinal drusenoid deposits. Ophthalmology 117:303–312 e301

    Google Scholar 

  • Zweifel SA, Imamura Y, Spaide TC et al (2010b) Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration. Ophthalmology 117:1775–1781

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai T. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Ma, W., Zhao, L., Wong, W.T. (2012). Microglia in the Outer Retina and Their Relevance to Pathogenesis of Age-Related Macular Degeneration. In: LaVail, M., Ash, J., Anderson, R., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 723. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0631-0_6

Download citation

Publish with us

Policies and ethics