Skip to main content

Cd Accumulation and Subcellular Distribution in Plants and Their Relevance to the Trophic Transfer of Cd

  • Chapter
  • First Online:
Abiotic Stress Responses in Plants
  • 4607 Accesses

Abstract

Cadmium (Cd) is an elemental substance that occurs naturally in the earth’s crust, and is variously taken up and incorporated into plant biological systems. Environmental contamination with this non-essential metal presents a challenge to plant species because they are often not equipped to regulate internal concentrations of Cd or to employ proper detoxification mechanisms. This review examines the movement of Cd from soil to plants, how different plant species handle Cd stress by evolutive acquisition of different mechanisms of tolerance and accumulation patterns. The consequences and toxic effects of Cd (hyper)accumulation in plants and other organisms to animal consumers in terrestrial ecosystems are highlighted. Understanding Cd uptake of plants, how they handle Cd contamination and how they made Cd bioavailable in trophic food chains is critical to the long-term safety and conservation of agricultural resources and ecosystems services and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amini M, Afyuni M, Fathianpour N, Khademi H, FlĂ¼hler H (2005) Continuous soil pollution mapping using fuzzy logic and spatial interpolation. Geoderma 124(3–4):223–233

    Article  CAS  Google Scholar 

  • Anonymous (2001a) Decision no. 2455/2001/EC of the European Parliament and of the Council of 20 November 2001 establishing the list of priority substances

    Google Scholar 

  • Anonymous (2001b) European Commission Regulation (EC) no. 466/2001 of 8 March 2001 setting maximum levels for certain contaminants in foodstuffs

    Google Scholar 

  • Anonymous (2002) Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). European community

    Google Scholar 

  • Antunes PMC, Berkelaar EJ, Boyle D, Hale BA, Hendershot W, Voigt A (2006) The biotic ligand model for plants and metals: technical chalanges for field application. Environ Toxicol Chem 25(3):875–882

    Article  PubMed  CAS  Google Scholar 

  • AssunĂ§Ă£o AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159(2):351–360

    Article  CAS  Google Scholar 

  • ATSDR (1999) Toxicological profile for cadmium. Agency for Toxic Substances and Disease Registry, Draft for Public Comment. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA

    Google Scholar 

  • Barkla BJ, Pantoja O (1996) Physiology of ion transport across the tonoplast of higher plants. Annu Rev Plant Physiol Plant Mol Biol 47(1):159–184

    Article  PubMed  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17(1):21–34

    Article  CAS  Google Scholar 

  • Bhartia N, Singh RP (1994) Antagonistic effect of sodium chloride to differential heavy metal toxicity regarding biomass accumulation and nitrate assimilation in Sesamum indicum seedlings. Phytochemistry 35(5): 1157–1161

    Article  Google Scholar 

  • Boyd RS (2004) Ecology of metal hyperaccumulation. New Phytol 162(3):563–567

    Article  Google Scholar 

  • Boyd R (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293(1):153–176

    Article  CAS  Google Scholar 

  • Briat J-F, Lebrun M (1999) Plant responses to metal toxicity. Compt Rendus Acad Sci III Sci Vie 322(1):43–54

    CAS  Google Scholar 

  • Cai SW, Yue L, Hu ZN, Zhong XZ, Ye ZL, Xu HD, Liu YR, Ji RD, Zhang WH, Zhang FY (1990) Cadmium exposure and health effects among residents in an irrigation area with ore dressing wastewater. Sci Total Environ 90:67–73

    Article  PubMed  CAS  Google Scholar 

  • CalhĂ´a CF, Soares AMVM, Mann RM (2006) Cadmium assimilation in the terrestrial isopod, Porcellio dilatatus – is trophic transfer important? Sci Total Environ 371(1–3):206–213

    PubMed  Google Scholar 

  • CalhĂ´a CF, Monteiro MS, Soares AMVM, Mann RM (2011) The influence of metal speciation on the ­bioavailability and sub-cellular distribution of cadmium to the terrestrial isopod, Porcellio dilatatus. Chemosphere 83(4):531–537

    Article  PubMed  CAS  Google Scholar 

  • Campbell PGC (2006) Cadmium – a priority pollutant. Environ Chem 3(6):387–388

    Article  CAS  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73(3):844–848

    Article  PubMed  CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8(3):279–284

    Article  PubMed  CAS  Google Scholar 

  • Cheung M-S, Wang W-X (2005) Influence of metal compartmentalization in different prey on the tranfer of metals to a predatory gastropod. Mar Ecol Prog Ser 286:155–166

    Article  CAS  Google Scholar 

  • Cheung M-S, Fok EMW, Ng TY-T, Yen Y-F, Wang W-X (2006) Subcellular cadmium distribution, accumulation, and toxicity in a predatory gastropod, Thais clavigera, fed different prey. Environ Toxicol Chem 25(1):174–181

    Article  PubMed  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212(4):475–486

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7(7):309–315

    Article  PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytocelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53(1):159–182

    Article  PubMed  CAS  Google Scholar 

  • Costa G, Morel JL (1994) Efficiency of H+−Atpase activity on cadmium uptake by 4 cultivars of lettuce. J Plant Nutr 17(4):627–637

    Article  CAS  Google Scholar 

  • Crews HM, Davies BE (1985) Heavy metal uptake from contaminated soils by 6 varieties of lettuce (Lactuca sativa L). J Agric Sci 105:591–595

    Article  CAS  Google Scholar 

  • Ebbs S, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl). Planta 214(4):635–640

    Article  PubMed  CAS  Google Scholar 

  • Eisler R (1985) Cadmium hazards to fish, wildçilfe and invertebrates (Contaminant Hazard Reviews). Patuxent Wildlife Research Center, U.S. Fish and Wildlife Service, Laurel, MD

    Google Scholar 

  • Fisher NS, Hook SE (2002) Toxicology tests with aquatic animals need to consider the trophic transfer of metals. Toxicology 181:531–536

    Article  PubMed  Google Scholar 

  • Fisher NS, Reinfelder JR (1995) The trophic transfer of metals in marine systems. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, London, pp 363–406

    Google Scholar 

  • Fisher NS, Teyssie JL, Fowler SW, Wang WX (1996) Accumulation and retention of metals in mussels from food and water: a comparison under field and laboratory conditions. Environ Sci Technol 30(11):3232–3242

    Article  CAS  Google Scholar 

  • Giguère A, Couillard Y, Campbell PGC, Perceval O, Hare L, Pinel-Alloul B, Pellerin J (2003) Steady-state distribution of metals among metallothionein and other cytosolic ligands and links to cytotoxicity in bivalves living along a polymetallic gradient. Aquat Toxicol 64(2):185–200

    Article  PubMed  CAS  Google Scholar 

  • Gimbert F, Vijver MG, Coeurdassier M, Scheifler R, Peijnenburg WJGM, Badot P-M, Vaufleury AD (2008) How subcellular partitioning can help to understand heavy metal accumulation and elimination kinetics in snails. Environ Toxicol Chem 27(6):1284–1292

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves M, Gonçalves S, Portugal A, Silva S, Sousa J, Freitas H (2007) Effects of nickel hyperaccumulation in Alyssum pintodasilvae on model arthropods representatives of two trophic levels. Plant Soil 293(1): 177–188

    Article  CAS  Google Scholar 

  • Gong J-M, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci USA 100(17): 10118–10123

    Article  PubMed  CAS  Google Scholar 

  • Goto D, Wallace WG (2010) Metal intracellular partitioning as a detoxification mechanism for mummichogs (Fundulus heteroclitus) living in metal-polluted salt marshes. Mar Environ Res 69(3):163–171

    Article  PubMed  CAS  Google Scholar 

  • Greger M (1999) Metal availability and bioconcentration in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants – from molecules to ecosystems. Springer, Berlin, Germany, pp 1–27

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  PubMed  CAS  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453(7193):391–395

    Article  PubMed  CAS  Google Scholar 

  • He QB, Singh BR (1993) Effect of organic-matter on the distribution, extractability and uptake of cadmium in soils. J Soil Sci 44(4):641–650

    Article  CAS  Google Scholar 

  • He QB, Singh BR (1994a) Crop uptake of cadmium from phosphorus fertilizers: I. Yield and cadmium content. Water Air Soil Pollut 74(3–4):251–265

    Google Scholar 

  • He QB, Singh BR (1994b) Crop uptake of cadmium from phosphorus fertilizers: II. Relationship with extractable soil cadmium. Water Air Soil Pollut 74(3–4): 267–280

    CAS  Google Scholar 

  • Hispard F, de Vaufleury A, Cosson RP, Devaux S, Scheifler R, Coeurdassier M, Gimbert F, Martin H, Richert L, Berthelot A, Badot PM (2008) Comparison of transfer and effects of Cd on rats exposed in a short experimental snail-rat food chain or to CdCl2 dosed food. Environ Int 34(3):381–389

    Article  PubMed  CAS  Google Scholar 

  • Hogstrand C, Wood CM, Bury NR, Wilson RW, Rankin JC, Grosell M (2002) Binding and movement of silver in the intestinal epithelium of a marine teleost fish, the European flounder (Platichthys flesus). Comp Biochem Physiol C Toxicol Pharmacol 133(1–2):125–135

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Kuo S, Bembenek R (2003) Cadmium uptake by lettuce from soil amended with phosphorus and trace element fertilizers. Water Air Soil Pollut 147(1–4): 109–127

    Article  CAS  Google Scholar 

  • IARC (1993) Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry (IARC monographs on the evaluation of carcinogenic risks to humans). Lyon, France

    Google Scholar 

  • Inaba T, Kobayashi E, Suwazono Y, Uetani M, Oishi M, Nakagawa H, Nogawa K (2005) Estimation of cumulative cadmium intake causing Itai-itai disease. Toxicol Lett 159(2):192–201

    Article  PubMed  CAS  Google Scholar 

  • Jackson AP, Alloway BJ (1991) The bioavailability of cadmium to lettuce and cabbage in soils previously treated with sewage sludges. Plant Soil 132(2): 179–186

    CAS  Google Scholar 

  • Jung MC, Thornton I (1996) Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea. Appl Geochem 11(1–2):53–59

    Article  CAS  Google Scholar 

  • Kobayashi E, Suwazono Y, Dochi M, Honda R, Kido T (2009) Influence of consumption of cadmium-polluted rice or Jinzu river water on occurrence of renal tubular dysfunction and/or Itai-itai disease. Biol Trace Elem Res 127(3):257–268

    Article  PubMed  CAS  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61(1):517–534

    Article  PubMed  CAS  Google Scholar 

  • Krupa Z, Siedlecka A, SkĂ³rzynska-Polit E, Maksymiek W (2002) Heavy metal interactions with plant nutrients. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, Dordrecht, Netherlands, pp 287–301

    Google Scholar 

  • KĂ¼pper H, Kochian LV (2010) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185(1):114–129

    Article  PubMed  CAS  Google Scholar 

  • Lane TW, Morel FOMM (2000) A biological function for cadmium in marine diatoms. Proc Natl Acad Sci USA 97(9):4627–4631

    Article  PubMed  CAS  Google Scholar 

  • Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FMM (2005) Biochemistry: a cadmium enzyme from a marine diatom. Nature 435(7038):42

    Article  PubMed  CAS  Google Scholar 

  • Laskowski R, Hopkin SP (1996) Accumulation of Zn, Cu, Pb and Cd in the garden snail (Helix aspersa): implications for predators. Environ Pollut 91(3):289–297

    Article  PubMed  CAS  Google Scholar 

  • Liu M-Q, Yanai J, Jiang R-F, Zhang F, McGrath SP, Zhao F-J (2008) Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens? Chemosphere 71(7):1276–1283

    Article  PubMed  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145(1):11–20

    Article  CAS  Google Scholar 

  • Ma JF, Ueno D, Zhao FJ, McGrath SP (2005) Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220(5):731–736

    Article  PubMed  CAS  Google Scholar 

  • Maier EA, Matthews RD, McDowell JA, Walden RR, Ahner BA (2003) Environmental cadmium levels increase phytochelatin and glutathione in lettuce grown in a chelator-buffered nutrient solution. J Environ Qual 32(4):1356–1364

    Article  PubMed  CAS  Google Scholar 

  • Mann RM, Serra EA, Soares AMVM (2006) Asimilation od cadmium in a european lacertid lizard: is trophic transfer important? Environ Toxicol Chem 25(12):3199–3203

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin MJ (2002) Bioavailability of metals to terrestrial plants. In: Allen HE (ed) Bioavailability of metals in terrestrial ecosystems: importance of partitioning for bioavailability to invertebrates, microbes, and plants. Society of Environmental Toxicology and Chemistry, Lawrence, MA, pp 39–68

    Google Scholar 

  • McLaughlin MJ, Whatmuff M, Warne M, Heemsbergen D, Barry G, Bell M, Nash D, Pritchard D (2006) A field investigation of solubility and food chain accumulation of biosolid-cadmium across diverse soil types. Environ Chem 3(6):428–432

    Article  CAS  Google Scholar 

  • Merrington G, Winder L, Green I (1997a) The uptake of cadmium and zinc by the bird-cherry oat aphid Rhopalosiphum padi (Homoptera:Aphididae) feeding on wheat grown on sewage sludge amended agricultural soil. Environ Pollut 96(1):111–114

    Article  PubMed  CAS  Google Scholar 

  • Merrington G, Winder L, Green I (1997b) The bioavailability of Cd and Zn from soils amended with sewage sludge to winter wheat and subsequently to the grain aphid Sitobion avenae. Sci Total Environ 205(2–3): 245–254

    CAS  Google Scholar 

  • Monteiro M, Santos C, Soares AMVM, Mann RM (2008) Does subcellular distribution in plants dictate the trophic bioavailability of cadmium to Porcellio dilatatus (Crustacea, Isopoda)? Environ Toxicol Chem 27(12):2548–2556

    Article  PubMed  CAS  Google Scholar 

  • Nogawa K, Honda R, Kido T, Tsuritani I, Yamada Y, Ishizaki M, Yamaya H (1989) A dose-response analysis of cadmium in the general environment with special reference to total cadmium intake limit. Environ Res 48(1):7–16

    Article  PubMed  CAS  Google Scholar 

  • Notten MJM, Oosthoek AJP, Rozema J, Aerts R (2005) Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient. Environ Pollut 138(1):178–190

    Article  PubMed  CAS  Google Scholar 

  • Notten MJM, Oosthoek AJP, Rozema J, Aerts R (2006) Heavy metal pollution affects consumption and reproduction of the landsnail Cepaea nemoralis fed on naturally polluted Urtica dioica leaves. Ecotoxicology 15(3):295–304

    Article  PubMed  CAS  Google Scholar 

  • Nriagu JO (1996) A history of global metal pollution. Science 272(5259):223–224

    Article  CAS  Google Scholar 

  • Oporto C, Vandecasteele C, Smolders E (2007) Elevated cadmium concentrations in potato tubers due to irrigation with river water contaminated by mining in Potosi, Bolivia. J Environ Qual 36(4):1181–1186

    Article  PubMed  CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184(1–4):105–126

    Article  CAS  Google Scholar 

  • Paquin PR, Gorsuch JW, Apte S, Batley GE, Bowles KC, Campbell PGC, Delos CG, Di Toro DM, Dwyer RL, Galvez F (2002) The biotic ligand model: a historical overview. Comp Biochem Physiol C Toxicol Pharmcol 133(1–2):3–35

    Article  Google Scholar 

  • Perceval O, Couillard Y, Pinel-Alloul B, Campbell PGC (2006) Linking changes in subcellular cadmium distribution to growth and mortality rates in transplanted freshwater bivalves (Pyganodon grandis). Aquat Toxicol 79(1):87–98

    Article  PubMed  CAS  Google Scholar 

  • Peris M, Mico C, Recatala L, Sanchez R, Sanchez J (2007) Heavy metal contents in horticultural crops of a representative area of the European Mediterranean region. Sci Total Environ 378(1–2):42–48

    PubMed  CAS  Google Scholar 

  • Pierce FJ, Dowdy RH, Grigal DF (1982) Concentrations of six trace metals in some major Minnesota soil series. J Environ Qual 11(3):416–422

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56(1):15–39

    Article  PubMed  CAS  Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35(4):525–545

    Article  CAS  Google Scholar 

  • Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120(3):497–507

    Article  PubMed  CAS  Google Scholar 

  • Rainbow PS (2007) Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ Int 33(4):576–582

    Article  PubMed  CAS  Google Scholar 

  • Rainbow PS, Smith BD (2010) Trophic transfer of trace metals: subcellular compartmentalisation in bivalve prey and comparative assimilation efficiencies of two invertebrate predators. J Exp Mar Biol Ecol 390(2): 143–148

    Article  CAS  Google Scholar 

  • Rauser W (1999) Structure and function of metal chelators produced by plants. Cell Biochem Biophys 31(1): 19–48

    Article  PubMed  CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Robards K, Worsfold P (1991) Cadmium: toxicology and analysis – a review. Analyst 116:549–568

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Wagner GJ (1993) Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity. J Biol Chem 268(17): 12297–12302

    PubMed  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13(5): 468–474

    Article  CAS  Google Scholar 

  • SanitĂ¡ di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41(2): 105–130

    Article  Google Scholar 

  • Schmidt R, Bancroft I (2011) Perspectives on genetics and genomics of the Brassicaceae. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae, vol 9. Springer, New York, pp 617–632

    Chapter  Google Scholar 

  • Shahzad Z, Gosti F, FrĂ©rot H, Lacombe E, Roosens N, Saumitou-Laprade P, Berthomieu P (2010) The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri. PLoS Genet 6(4):e1000911

    Article  PubMed  CAS  Google Scholar 

  • Shao H-B, Chu L-Y, Ni F-T, Guo D-G, Li H, Li W-X (2010) Perspective on phytoremediation for improving heavy metal-contaminated soils. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Netherlands, pp 227–244

    Chapter  Google Scholar 

  • Singh RP, Agrawal M (2007) Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 67(11):2229–2240

    Article  PubMed  CAS  Google Scholar 

  • Speir TW, Van Schaik AP, Percival HJ, Close ME, Pang LP (2003) Heavy metals in soil, plants and groundwater following high-rate sewage sludge application to land. Water Air Soil Pollut 150(1–4):319–358

    Article  CAS  Google Scholar 

  • Steen Redeker E, van Campenhout K, Bervoets L, Reijnders H, Blust R (2007) Subcellular distribution of Cd in the aquatic oligochaete Tubifex tubifex, implications for trophic availability and toxicity. Environ Pollut 148(1):166–175

    Article  PubMed  CAS  Google Scholar 

  • Ueno D, Ma JF, Iwashita T, Zhao FJ, McGrath SP (2005) Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using Cd-113-NMR. Planta 221(6):928–936

    Article  PubMed  CAS  Google Scholar 

  • Vassilev A, Yordanov I (1997) Reductive analysis of factors limiting growth of cadmium-treated plants: a review. Bulg J Plant Physiol 23:114–133

    CAS  Google Scholar 

  • Vesk P, Reichman S (2009) Hyperaccumulators and ­herbivores – a bayesian meta-analysis of feeding choice trials. J Chem Ecol 35(3):289–296

    Article  PubMed  CAS  Google Scholar 

  • Vijver MG, van Gestel CAM, Lanno RP, van Straalen NM, Peijnenburg WJGM (2004) Internal metal sequestration and its ecotoxicological relevance: a review. Environ Sci Technol 38(18):4705–4712

    Article  PubMed  CAS  Google Scholar 

  • Vijver MG, van Gestel CAM, van Straalen NM, Lanno RP, Peijnenburg WJGM (2006) Biological significance of metals partitioned to subcellular fractions within earthworms (Aporrectodea caliginosa). Environ Toxicol Chem 25:807–814

    Article  PubMed  CAS  Google Scholar 

  • Vijver MG, Koster M, Peijnenburg WJGM (2007) Impact of pH on Cu accumulation kinetics in earthworm cytosol. Environ Sci Technol 41(7):2255–2260

    Article  PubMed  CAS  Google Scholar 

  • Vogeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides. Plant Physiol 92(4):1086–1093

    Article  PubMed  CAS  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–212

    Article  CAS  Google Scholar 

  • Wallace WG, Lopez GR (1997) Bioavailability of biologically sequestered cadmium and the implications of metal detoxification. Mar Ecol Prog Ser 147(1–3):149–157

    Article  CAS  Google Scholar 

  • Wallace WG, Luoma SN (2003) Subcellular compartmentalization of Cd and Zn in two bivalves. II. Significance of trophically available metal (TAM). Mar Ecol Prog Ser 257:125–137

    Article  CAS  Google Scholar 

  • Wallace WG, Lopez GR, Levinton JS (1998) Cadmium resistance in an oligochaete and its effect on cadmium trophic transfer to an omnivorous shrimp. Mar Ecol Prog Ser 172:225–237

    Article  CAS  Google Scholar 

  • Wallace WG, Lee BG, Luoma SN (2003) Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM). Mar Ecol Prog Ser 249:183–197

    Article  CAS  Google Scholar 

  • Wang W-X, Fisher NS (1999) Assimilation efficiencies of chemical contaminants in aquatic invertebrates: a synthesis. Environ Toxicol Chem 18(9):2034–2045

    Article  CAS  Google Scholar 

  • Wang WX, Rainbow PS (2006) Subcellular partitioning and the prediction of cadmium toxicity to aquatic organisms. Environ Chem 3(6):395–399

    Article  CAS  Google Scholar 

  • Witzel B (2000) The influence of zinc on the uptake and loss of cadmium and lead in the woodlouse, Porcellio scaber (Isopoda, Oniscidea). Ecotoxicol Environ Saf 47(1):43–53

    Article  PubMed  CAS  Google Scholar 

  • Zidar P, Drobne D, Å trus J, Blejec A (2003) Intake and assimilation of zinc, copper, and cadmium in the terrestrial isopod Porcellio scaber Latr. (Crustacea, Isopoda). Bull Environ Contam Toxicol 70(5): 1028–1035

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Portuguese Foundation for Science & Technology (FCT) supported the postdoctoral fellowship of M.S. Monteiro (SFRH/BPD/45911/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Monteiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Monteiro, M.S., Soares, A.M.V.M. (2012). Cd Accumulation and Subcellular Distribution in Plants and Their Relevance to the Trophic Transfer of Cd. In: Ahmad, P., Prasad, M. (eds) Abiotic Stress Responses in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0634-1_21

Download citation

Publish with us

Policies and ethics