Skip to main content

Self-assembled Quantum Dots: From Stranski–Krastanov to Droplet Epitaxy

  • Chapter
  • First Online:
Self-Assembly of Nanostructures

Abstract

The results of investigation of InAs QDs in Al(Ga)As matrix grown by Stranski–Krastanov method and droplet epitaxy are presented. The atomic and energy structure of InAs/AlAs QDs was investigated in different growth conditions for Stranski–Krastanov method, and the coexistence of direct and indirect band structures is revealed. However, the lack of carrier transfer due to the low quality of a heterointerface and high concentration of nonradiative recombination centers is challenging. To overcome these problems, we used droplet epitaxy. As QD density in droplet epitaxy is determined by nucleation, we studied the initial stage of homoepitaxy in model system of GaAs to analyze nucleation processes. A proposed statistical approach is also very effective to describe InAs/GaAs QD formation in Stranski–Krastanov mode. The array of In metal droplets on the GaAs surface is studied as an initial stage of droplet epitaxy, and a model of droplet evolution is proposed. Indium dose dependence of QD properties reveals a critical phenomenon of a growth mode transition. Finally high-quality \( {\hbox{InAs/A}}{{\hbox{l}}_{{{0}{.9}}}}{\hbox{G}}{{\hbox{a}}_{{{0}{.1}}}}{\hbox{As}} \) QDs structures with a perfect heterointerface and high efficiency of the carrier capture from wetting layer to QDs were grown by droplet epitaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The large size dispersion appears also as a large linewidth (FWHM achieves 180 meV) of the QDs PL band. In our case, the FWHM of PL bands and, therefore, dispersion are in several times larger than for InAs/GaAs QDs (see, e.g.: [7982].)

  2. 2.

    Composition of QDs form at fixed temperature with a \( {t_{\rm{GI}}} \) determines via linear interpolation between the minimal and the maximal values of \( {t_{\rm{GI}}} \). The interruption times correspond to QDs with compositions, x equal to 0.1n, where n can be taken from 4 to 10, were selected as reference points for each \( {T_{\rm{g}}} \). Then the points with equal composition x are connected by B-spline lines.

  3. 3.

    In order to select PL of a single QD in array the samples studied in [56] were covered by an aluminum mask containing small square apertures fabricated by electron beam lithography.

  4. 4.

    It was recently demonstrated that type I In(Ga)As/GaAs QDs exhibit a red shift of the PL band with increasing excitation density. This effect was observed for a QDs array [107]. Besides, for a single QD increasing excitation density leads to appearance of additional PL bands red shifted relatively the X\( _0 \) excitonic transition [108]. The relative intensity of these bands strongly increases with increasing excitation power density [109]. These bands were explained in terms of the recombination of multiparticle neutral and charged excitons (see, e.g., [110, 111]). In our case, a red shift is due to the appearance of additional low energy PL bands with high FWHM.

  5. 5.

    Rise time of PL is similar in structure with a separate thin QW and in structure with QDs (In(Ga)As/GaAs, InAs/InP, and GaAs/AlGaAs) equals to several tens of picosecond (see [148151]). Therefore, one can assume similar probability of carriers capture from matrix to QW and QDs.

  6. 6.

    Longtime PL decay in the InAs/AlAs QDs observed in this investigation demonstrates that carriers captured in QDs recombine via photon emission only. Actually, we demonstrated recently in the [53] that even a small part (5%) of QDs with nonradiative centers decreases the duration of QDs PL decay down to about 1 μs due to the long-range transfer of the exciton energy to the nonradiative centers.

  7. 7.

    The large difference in the prolonged recombination decay of localized carriers in the wetting layer and QDs is explained by k-conservation rule. Both the QDs and wetting layer have similar energy structure with the lowest electronic level at the XXY minimum of the conduction band (see [57, 117]). The k-conservation rule is applied for weakly localized carriers in the wetting layer, where the carriers recombine mainly via scattering on phonons (see [57]); however, this rule is broken in QDs, where, as we have shown in [117], faster no-phonon recombination dominates.

  8. 8.

    According to the calculation of the InAs/AlAs QDs energy structure made in our recent study [117], the energy of electron localization in an array of QDs varies from 70 to 150 meV. The latter value is close to the activation energy of the QD band quenching.

References

  1. Alonso-Gonzalez, P., Alen, B., Fuster, D., Gonzalez, Y., Gonzalez, L.: Appl. Phys. Lett. 91, 163104 (2007)

    Article  ADS  Google Scholar 

  2. Lee, J.H., Wang, Zh.M., Strom, N.W., Mazur, Yu.I., Salamo, G.J.: Appl. Phys. Lett. 89, 202101 (2006)

    Article  ADS  Google Scholar 

  3. Lee, C.D., Park, C., Lee, H.J., Lee, K.S., Park, S.J., Park, C.G., Noh, S.K., Koguchi, N.: Jpn. J. Appl. Phys. 37, 7158 (1998)

    Article  ADS  Google Scholar 

  4. Mano, T., Kuroda, T., Sanguinetti, S., Ochiai, T., Tateno, T., Kim, J., Noda, T., Kawabe, M., Sakoda, K., Kido, G., Koguchi, N.: Nano Lett. 5, 425 (2005)

    Article  ADS  Google Scholar 

  5. Wang, Zh.M., Holmes, K., Shultz, J.L., Salamo, G.J.: Phys. Stat. Sol. 202, R85 (2005)

    Article  ADS  Google Scholar 

  6. Watanabe, K., Koguchi, N., Gotoh, Y.: Jpn. J. Appl. Phys. 39, L79 (2000)

    Article  ADS  Google Scholar 

  7. Bimberg, D. (ed.): Nanoscience and Technology: Semiconductor Nanostructures. Springer-Verlag, Berlin (2008)

    Google Scholar 

  8. Itoh, M.: Prog. Surf. Sci. 66, 53 (2001)

    Article  ADS  Google Scholar 

  9. Avery, A.R., Dobbs, H.T., Holmes, D.M.: Phys. Rev. Lett. 70, 3938 (1997)

    Article  ADS  Google Scholar 

  10. Ishii, A., Kawamura, T.: Surf. Sci. 436, 38 (1999)

    Article  ADS  Google Scholar 

  11. Itoh, M., Bell, G.R., Avery, A.R.: Phys. Rev. Lett. 81, 633 (1998)

    Article  ADS  Google Scholar 

  12. Kangawa, Y., Ito, T., Taguchi, A.: Appl. Surf. Sci. 190, 517 (2002)

    Article  ADS  Google Scholar 

  13. Kratzer, P., Morgan, C.G., Scheffler, M.: Phys. Rev. B 59, 15246 (1999)

    Article  ADS  Google Scholar 

  14. Kratzer, P., Penev, E., Scheffler, M.: Appl. Phys. A 75, 79 (2002)

    Article  ADS  Google Scholar 

  15. Kratzer, P., Scheffler, M.: Phys. Rev. Lett. 88, 036102 (2002)

    Article  ADS  Google Scholar 

  16. Penev, E., Kratzer, P., Scheffler, M.: Appl. Surf. Sci. 216, 436 (2003)

    Article  Google Scholar 

  17. Joyce, B., Vvedensky, D.: Mater. Sci. Eng. R46, 127 (2004)

    Google Scholar 

  18. Galitsyn, Yu, Dmitriev, D., Mansurov, V., Moshchenko, S., Toropov, A.: JETP Lett. 86, 482 (2007)

    Article  ADS  Google Scholar 

  19. Xue, Q.K., Hashizume, T., Ohno, A.T., Hasegawa, Y., Sakurai, T.: Sci. Rep. RITU A 44, 113 (1997)

    Google Scholar 

  20. Koduvely, H.M., Zangwill, A.: Phys. Rev. B 60, R2204 (1999)

    Article  ADS  Google Scholar 

  21. Kobayashi, N.P., Ramachandrah, T.R., Chen, P., Madhukar, A.: Appl. Phys. Lett. 68, 3299 (1996)

    Article  ADS  Google Scholar 

  22. Dobbs, H.T., Zangwill, A., Vvedensky, D.D.: Surface diffusion

    Google Scholar 

  23. Leonard, J.D., Pond, K., Petroff, P.M.: Phys. Rev. B 50, 11687 (1994)

    Article  ADS  Google Scholar 

  24. Placidi, E., Arciprete, F., Fanfoni, M., Patella, F., Orsini, E., Balzarotti, A.: J. Phys. Cond. Matt. 19, 225006 (2007)

    Article  ADS  Google Scholar 

  25. Sun, J., Jin, P., Wang, Z.: Nanotechnology 15, 1763 (2004)

    Article  ADS  Google Scholar 

  26. Marchenko, V.I.: JETP Lett. 33, 397 (1981)

    Google Scholar 

  27. Zhdanov, V., Kasemo, B.: Surf. Sci. Rep. 20, 111 (1994)

    Article  ADS  Google Scholar 

  28. Galitsyn, Yu.G., Dmitriev, D.V., Mansurov, V.G., Moshchenko, S.P., Toropov, A.I.: JETP Lett. 81, 629 (2005)

    Article  Google Scholar 

  29. Galitsyn, Yu, Dmitriev, D., Mansurov, V., Moshchenko, S., Toropov, A.: JETP Lett. 84, 505 (2006)

    Article  ADS  Google Scholar 

  30. Koguchi, N., Takahashi, S., Chikyow, T.: J. Crystal Growth 111, 688 (1991)

    Article  ADS  Google Scholar 

  31. Sholz, M., Buttner, S., Benson, O., Toropov, A.I., Bakarov, A.K., Lochmann, A., Stock, E., Schulz, O., Hopfer, F., Haisler, V.A., Bimberg, D.: Opt. Express 15, 9107 (2007)

    Article  ADS  Google Scholar 

  32. Stock, E., Warming, T., Ostapenko, I., Rodt, S., Schliwa, A., Töfflinger, J.A., Lochmann, A., Toropov, A.I., Moshchenko, S.P., Dmitriev, D.V., Haisler, V.A., Bimberg, D.: Appl. Phys. Lett. 96, 093112 (2010)

    Article  ADS  Google Scholar 

  33. Li, L.H., Chauvin, N., Patriarche, G., Alloing, B., Fiore, A.: J. Appl. Phys. 104, 083508 (2008)

    Article  ADS  Google Scholar 

  34. Wang, Zh.M., Liang, B.L., Sablon, K.A., Salamo, G.J.: Appl. Phys. Lett. 90, 113120 (2007)

    Article  ADS  Google Scholar 

  35. Alonso-Gonzalez, P., Fuster, D., Gonzalez, L., Martin-Sanchez, J., Gonzalez, Y.: Appl. Phys. Lett. 93, 183106 (2008)

    Article  ADS  Google Scholar 

  36. Gong, Z., Niu, Z.C., Huang, S.S., Fang, Z.D., Sun, B.Q., Xia, J.B.: Appl. Phys. Lett. 87, 093116 (2005)

    Article  ADS  Google Scholar 

  37. Heyn, Ch, Stemmann, A., Koppen, T., Strelow, Ch, Kipp, T., Grave, M., Mendach, S., Hansen, W.: Appl. Phys. Lett. 94, 183113 (2009)

    Article  ADS  Google Scholar 

  38. Heyn, Ch, Stemmann, A., Hansen, W.: J. Crystal Growth 311, 1839 (2009)

    Article  ADS  Google Scholar 

  39. Heyn, Ch, Stemmann, A., Eiselt, R., Hansen, W.: J. Appl. Phys. 105, 054316 (2009)

    Article  ADS  Google Scholar 

  40. Liang, B.L., Wang, Zh.M., Lee, J.H., Sablon, K., Mazur, Yu.I., Salamo, G.J.: Appl. Phys. Lett. 89, 043113 (2006)

    Article  ADS  Google Scholar 

  41. Stemmann, A., Heyn, Ch, Koppen, T., Kipp, T., Hansen, W.: Appl. Phys. Lett. 93, 123108 (2008)

    Article  ADS  Google Scholar 

  42. Landau, L.D., Lifshits, E.M.: Statistical Physics. Nauka, Moscow (1964)

    Google Scholar 

  43. Stemmann, A., Koppen, T., Grave, M., Wildfang, S., Mendach, S., Hansen, W., Heyn, Ch: J. Appl. Phys. 106, 064315 (2009)

    Article  ADS  Google Scholar 

  44. Lyamkina, A.A., Dmitriev, D.V., Galitsyn, Yu.G., Kesler, V.G., Moshchenko, S.P., Toropov, A.I.: Nanoscale Res. Lett. 6, 42 (2011)

    ADS  Google Scholar 

  45. Heitz, R., Guffarth, F., Potschke, K., Schliwa, A., Bimberg, D.: Phys. Rev. B 71, 045325 (2005)

    Article  ADS  Google Scholar 

  46. Pohl, U.W., Pötschke, K., Schliwa, A., Guffarth, F., Bimberg, D.: Phys. Rev. B 72, 245332 (2005)

    Article  ADS  Google Scholar 

  47. Lyamkina, A.A., Moshchenko, S.P., Haisler, V.A., Galitsyn, Yu.G., Toropov, A.I.: Proceedings of Collaborative Conference on Interacting Nanostructures, San Diego, 9–13 November 2009, p. 23.

    Google Scholar 

  48. Dawson, P., Ma, Z., Pierz, K., Göbel, E.O.: Appl. Phys. Lett. 81, 2349 (2002)

    Article  ADS  Google Scholar 

  49. Dawson, P., Göbel, E.O., Pierz, K.: J. Appl. Phys. 98, 013541 (2005)

    Article  ADS  Google Scholar 

  50. Shamirzaev, T.S., Gilinsky, A.M., Toropov, A.I., Bakarov, A.K., Tenne, D.A., Zhuravlev, K.S., von Borczyskowski, C., Zahn, D.R.T.: JETP Lett. 77, 389 (2003)

    Article  ADS  Google Scholar 

  51. Fu, H., Wang, L.-W., Zunger, A.: Phys. Rev. B 59, 5568 (1999)

    Article  ADS  Google Scholar 

  52. Goupalov, S.V., Ivchenko, E.L.: Phys. Sol. State 42, 2030 (2000)

    Article  ADS  Google Scholar 

  53. Shamirzaev, T.S., Gilinsky, A.M., Kalagin, A.K., Toropov, A.I., Gutakovskii, A.K., Zhuravlev, K.S.: Semicond. Sci. Technol. 21, 527 (2006)

    Article  ADS  Google Scholar 

  54. Offermans, P., Koenraad, P.M., Wolter, J.H., Pierz, K., Roy, M., Maksym, P.A.: Phys. Rev. B 72, 165332 (2005)

    Article  ADS  Google Scholar 

  55. Williamson, A.J., Franceschetti, A., Fu, H., Wang, L.W., Zunger, A.: J. Electron. Mater. 28, 414 (1999)

    Article  ADS  Google Scholar 

  56. Sarkar, D., van der Meulen, H.P., Calleja, J.M., Becker, J.M., Haug, R.J., Pierz, K.: Phys. Rev. B 71, 081302R (2005)

    Article  ADS  Google Scholar 

  57. Shamirzaev, T.S., Gilinsky, A.M., Kalagin, A.K., Nenashev, A.V., Zhuravlev, K.S.: Phys. Rev. B 76, 155309 (2007)

    Article  ADS  Google Scholar 

  58. Heyn, Ch, Hansen, W.: J. Crystal Growth 251, 218 (2003)

    Article  ADS  Google Scholar 

  59. Litvinov, D., Gerthsen, D., Rosenauer, A., Schowalter, M., Passow, T., Feinaugle, P., Hetterich, M.: Phys. Rev. B 74, 165306 (2006)

    Article  ADS  Google Scholar 

  60. Martini, S., Quivy, A.A., Lamas, T.E., da Silva, E.C.F.: Phys. Rev. B 72, 153304 (2005)

    Article  ADS  Google Scholar 

  61. Offermans, P., Koenraad, P.M., Notzel, R., Wolter, J.H., Pierz, K.: Appl. Phys. Lett. 87, 111903 (2005)

    Article  ADS  Google Scholar 

  62. Rosenauer, A., Oberst, W., Litvinov, D., Gerthsen, D., Förster, A., Schmidt, R.: Phys. Rev. B 61, 8276 (2000)

    Article  ADS  Google Scholar 

  63. Rosenauer, A., Gerthsen, D., Van Dyck, D., Arzberger, M., Böhm, G., Abstreiter, G., Schmidt, R.: Phys. Rev. B 64, 245334 (2001)

    Article  ADS  Google Scholar 

  64. Schowalter, M., Rosenauer, A., Gerthsen, D., Arzberger, M., Bichler, M., Abstreiter, G.: Appl. Phys. Lett. 79, 4426 (2001)

    Article  ADS  Google Scholar 

  65. Muraki, K., Fukatsu, S., Shiraki, Y., Ito, R.: Appl. Phys. Lett. 61, 557 (1992)

    Article  ADS  Google Scholar 

  66. Lemaitre, A., Patriarche, G., Glas, F.: Appl. Phys. Lett. 85, 3717 (2004)

    Article  ADS  Google Scholar 

  67. Liao, X.Z., Zou, J., Cockayne, D.J.H., Leon, R., Lobo, C.: Phys. Rev. Lett. 82, 5148 (1999)

    Article  ADS  Google Scholar 

  68. Liu, N., Tersoff, J., Baklenov, O., Holmes Jr., A.L., Shih, C.K.: Phys. Rev. Lett. 80, 334 (1997)

    Google Scholar 

  69. Passow, T., Li, S., Feinäugle, P., Vallaitis, T., Leuthold, J., Litvinov, D., Gerthsen, D., Hetterich, M.: J. Appl. Phys. 102, 073511 (2007)

    Article  ADS  Google Scholar 

  70. Quinn, P.D., Wilson, N.R., Hatfield, S.A., McConville, C.F., Bell, G.R., Noakes, T.C.Q., Bailey, P., Al-Harthi, S., Gard, F.: Appl. Phys. Lett. 87, 153110 (2005)

    Article  ADS  Google Scholar 

  71. Walther, T., Cullis, A.G., Norris, D.J., Hopkinson, M.: Phys. Rev. Lett. 86, 2381 (2001)

    Article  ADS  Google Scholar 

  72. Wang, P., Bleloch, A.L., Falke, M., Goodhew, P.J., Ng, J., Missous, M.: Appl. Phys. Lett. 89, 072111 (2006)

    Article  ADS  Google Scholar 

  73. Ibánez, J., Cuscó, R., Artús, L., Henini, M., Patané, A., Eaves, L.: Appl. Phys. Lett. 88, 141905 (2006)

    Article  ADS  Google Scholar 

  74. Cherkashin, N.A., Maksimov, M.V., Makarov, A.G., Shchukin, V.A., Ustinov, V.M., Lukovskaya, N.V., Musikhin, Yu.G., Cirlin, G.E., Bert, N.A., Alferov, Zh.I.: Semiconductors 37, 861 (2003)

    Article  ADS  Google Scholar 

  75. Ballet, P., Smathers, J.B., Yang, H., Workman, C.L., Salamo, G.J.: J. Appl. Phys. 90, 481 (2001)

    Article  ADS  Google Scholar 

  76. Ferdosa, F., Wanga, S., Weia, Y., Sadeghib, M., Zhaoc, Q., Larsson, A.: J. Crystal Growth 251, 145 (2003)

    Article  ADS  Google Scholar 

  77. Park, S.K., Tatebayashi, J., Arakawa, Y.: Appl. Phys. Lett. 84, 1877 (2004)

    Article  ADS  Google Scholar 

  78. Pierz, K., Ma, Z., Hapke-Wurst, I., Keyser, U.F., Zeitler, U., Haug, R.J.: Physica E 13, 761 (2002)

    Article  ADS  Google Scholar 

  79. Heidemeyer, H., Kiravittaya, S., Müller, C., Jin-Phillipp, N.Y., Schmidt, O.G.: Appl. Phys. Lett. 80, 1544 (2002)

    Article  ADS  Google Scholar 

  80. Le Ru, E.C., Howe, P., Jones, T.S., Murray, R.: Phys. Rev. B 67, 165303 (2003)

    Article  ADS  Google Scholar 

  81. Song, H.Z., Usuki, T., Nakata, Y., Yokoyama, N., Sasakura, H., Muto, S.: Phys. Rev. B 73, 115327 (2006)

    Article  ADS  Google Scholar 

  82. Yang, T., Tatebayashi, J., Tsukamoto, S., Nishioka, M., Arakawa, Y.: Appl. Phys. Lett. 84, 2817 (2004)

    Article  ADS  Google Scholar 

  83. Dubrovskii, V.G., Cirlin, G.E., Ustinov, V.M.: Phys. Rev. B 68, 075409 (2003)

    Article  ADS  Google Scholar 

  84. Joyce, P.B., Krzyzewski, T.J., Bell, G.R., Jones, T.S., Malik, S., Childs, D., Murray, R.: Phys. Rev. B 62, 10891 (2000)

    Article  ADS  Google Scholar 

  85. Songmuang, R., Kiravittaya, S., Sawadsaringkarn, M., Panyakeow, S., Schmidt, O.G.: J. Crystal Growth 251, 166 (2003)

    Article  ADS  Google Scholar 

  86. Pierz, K., Ma, Z., Keyser, U.F., Haug, R.J.: J. Crystal Growth 249, 477 (2003)

    Article  ADS  Google Scholar 

  87. The NEXTNANO3 software package can be downloaded from http://www.wsi.tum.de/nextnano3; http://www.nextnano.de

  88. Kane, O.E.: J. Phys. Chem. Solids 1, 249 (1957)

    Article  ADS  Google Scholar 

  89. Milekhin, A.G., Toropov, A.I., Bakarov, A.K., Tenne, D.A., Zanelatto, G., Galzerani, J.C., Schulze, S., Zahn, D.R.T.: Phys. Rev. B 70, 085314 (2004)

    Article  ADS  Google Scholar 

  90. Biasiol, G., Heun, S., Golinelli, G.B., Locatelli, A., Mentes, T.O., Guo, F.Z., Hofer, C., Teichert, C., Sorba, L.: Appl. Phys. Lett. 87, 223106 (2005)

    Article  ADS  Google Scholar 

  91. Gironcoli, S., Baroni, S., Resta, R.: Phys. Rev. Lett. 62, 2853 (1989)

    Article  ADS  Google Scholar 

  92. Munoz, M.C., Armelles, G.: Phys. Rev. B 48, 2839 (1993)

    Article  ADS  Google Scholar 

  93. Van der Walle, C.: Phys. Rev. B 39, 1871 (1989)

    Article  ADS  Google Scholar 

  94. Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: J. Appl. Phys. 89, 5815 (2001)

    Article  ADS  Google Scholar 

  95. Wei, S.-H., Zunger, A.: Appl. Phys. Lett. 72, 2011 (1998)

    Article  ADS  Google Scholar 

  96. Wei, S.-H., Zunger, A.: Phys. Rev. B 60, 5404 (1999)

    Article  ADS  Google Scholar 

  97. Ridley, B.K.: J. Appl. Phys. 48, 754 (1977)

    Article  ADS  Google Scholar 

  98. Boykin, T.B.: Phys. Rev. B 56, 9613 (1997)

    Article  ADS  Google Scholar 

  99. Madelung, O., Weiss, H., Schulz, M. (eds.): Numeral Data and Functional Relationships in Science and Technology, Landolt-Bornstein, New Series, Group III (Crystal and Solid State Physics), vol. 17. Springer, Heidelberg (1982)

    Google Scholar 

  100. Ledentsov, N.N., Böhrer, J., Beer, M., Heinrichsdorff, F., Grundmann, M., Bimberg, D., Ivanov, S.V., Meltser, B.Y., Shaposhnikov, S.V., Yassievich, I.N., Faleev, N.N., Kopev, P.S., Alferov, Zh.I.: Phys. Rev. B 52, 14058 (1995)

    Article  ADS  Google Scholar 

  101. Hatami, F., Ledentsov, N.N., Grundmann, M., Heinrichsdorff, F., Bimberg, D., Ruvimov, S.S., Werner, P., Gosele, O., Heydenreich, J., Richter, U., Ivanov, S.V., Meltser, B.Ya., Kopev, P.S., Alferov, Zh.I.: Appl. Phys. Lett. 67, 656 (1995)

    Article  ADS  Google Scholar 

  102. Itskevich, I.E., Lyapin, S.G., Troyan, I.A., Klipsteinet, P.C., Eaves, L., Main, P.C., Henini, M.: Phys. Rev. B 58, R4250 (1998)

    Article  ADS  Google Scholar 

  103. Kuo, M.C., Hsu, J.S., Shen, J.L., Chiu, K.C., Fan, W.C., Lin, Y.C., Chia, C.H., Chou, W.C., Yasar, M., Mallory, R., Petrou, A., Luo, H.: Appl. Phys. Lett. 89, 263111 (2006)

    Article  ADS  Google Scholar 

  104. Blome, P.G., Wenderoth, M., Hbner, M., Ulbrichet, R.G., Porsche, J., Scholz, F.: Phys. Rev. B 61, 8382 (2000)

    Article  ADS  Google Scholar 

  105. Empedocles, S.A., Norris, D.J., Bawendi, M.G.: Phys. Rev. Lett. 77, 3873 (1996)

    Article  ADS  Google Scholar 

  106. Sychugov, I., Juhasz, R., Valenta, J., Linnros, J.: Phys. Rev. Lett. 94, 087405 (2005)

    Article  ADS  Google Scholar 

  107. Raymond, S., Guo, X., Merz, J.L., Fafard, S.: Phys. Rev. B 59, 7624 (1999)

    Article  ADS  Google Scholar 

  108. Dekel, E., Regelman, D.V., Gershoni, D., Ehrenfreund, E., Schoenfeld, W.V., Petroff, P.M.: Phys. Rev. B 62, 11038 (2000)

    Article  ADS  Google Scholar 

  109. Regelman, D.V., Mizrahi, U., Gershoni, D., Ehrenfreund, E., Schoenfeld, W.V., Petroff, P.M.: Phys. Rev. Lett. 87, 257401 (2001)

    Article  ADS  Google Scholar 

  110. Dekel, E., Gershoni, D., Ehrenfreund, E., Spektor, D., Garcia, J.M., Petroff, P.M.: Phys. Rev. Lett. 80, 4991 (1998)

    Article  ADS  Google Scholar 

  111. Lomascolo, M., Vergine, A., Johal, T.K., Rinaldi, R., Passaseo, A., Cingolani, R., Patan, S., Labardi, M., Allegrini, M., Troiani, F., Molinari, E.: Phys. Rev. B 66, 041302(R) (2002)

    Article  ADS  Google Scholar 

  112. Kovalev, D., Heckler, H., Ben-Chorin, M., Polisski, G., Schwartzkopff, M., Koch, F.: Phys. Rev. Lett. 81, 2803 (1998)

    Article  ADS  Google Scholar 

  113. Shamirzaev, T.S., Nenashev, A.V., Zhuravlev, K.S.: Appl. Phys. Lett. 92, 213101 (2008)

    Article  ADS  Google Scholar 

  114. Jung, S.I., Yoon, J.J., Park, H.J., Park, Y.M., Jeon, M.H., Leem, J.Y., Lee, C.M., Cho, E.T., Lee, J.I., Kim, J.S.: Physica E 26, 100–104 (2005)

    Article  ADS  Google Scholar 

  115. Ma, Z., Pierz, K., Hinze, P.: Appl. Phys. Lett. 79, 2564 (2001)

    Article  ADS  Google Scholar 

  116. Ma, Z., Pierz, K., Keyser, U.F., Haug, R.J.: Physica E 17, 117 (2003)

    Article  ADS  Google Scholar 

  117. Shamirzaev, T.S., Nenashev, A.V., Gutakovskii, A.K., Kalagin, A.K., Zhuravlev, K.S., Larsson, M., Holtz, P.O.: Phys. Rev. B 78, 085323 (2008)

    Article  ADS  Google Scholar 

  118. Convertino, A., Cerri, L., Leo, G., Viticoli, S.: J. Crystal Growth 261, 458 (2004)

    Article  ADS  Google Scholar 

  119. Fu, Y., Ferdos, F., Sadeghi, M., Wang, S.M., Larsson, A.: J. Appl. Phys. 92, 3089 (2002)

    Article  ADS  Google Scholar 

  120. Stangl, J., Holy, V., Bauer, G.: Rev. Mod. Phys. 76, 725 (2004)

    Article  ADS  Google Scholar 

  121. Lin, C.-A.J., Liedl, T., Sperling, R.A., Fernández-Argüelles, M.T., Costa-Fernández, J.M., Pereiro, R., Sanz-Medel, A., Chang, W.H., Parak, W.J.: J. Mater. Chem. 17, 1343 (2007)

    Article  Google Scholar 

  122. Medintz, I.L., Clapp, A.R., Mattoussi, H., Goldman, E.R., Fisher, B., Mauro, J.M.: Nat. Mater. 2, 630 (2003)

    Article  ADS  Google Scholar 

  123. Lunz, M., Bradley, A.L., Chen, W.-Y., Gunko, Yu.K.: Superlatt. Microstruct. 47, 98 (2010)

    Article  ADS  Google Scholar 

  124. Förster, T.: Ann. Phys. 2, 55 (1948)

    Article  MATH  Google Scholar 

  125. Kim, D., Okahara, S., Nakayama, M., Shim, Y.: Phys. Rev. B 78, 153301 (2008)

    Article  ADS  Google Scholar 

  126. Tackeuchi, A., Kuroda, T., Mase, K., Nakata, Y., Yokoyama, N.: Phys. Rev. B 62, 1568 (2000)

    Article  ADS  Google Scholar 

  127. Govorov, A.O.: Phys. Rev. B 68, 075315 (2003)

    Article  ADS  Google Scholar 

  128. Arakawa, Y., Sakaki, H.: Appl. Phys. Lett. 40, 939 (1982)

    Article  ADS  Google Scholar 

  129. Sun, K.W., Chen, J.W., Lee, B.C., Lee, C.P., Kechiantz, A.M.: Nanotechnology 16, 1530 (2005)

    Article  Google Scholar 

  130. Brandt, O., Tapfer, L., Cingolani, R., Ploog, K., Hohenstein, M., Phillipp, F.: Phys. Rev. B 41, 12599 (1990)

    Article  ADS  Google Scholar 

  131. Siegert, J., Marcinkeviius, M., Zhao, Q.X.: Phys. Rev. B 72, 085316 (2005)

    Article  ADS  Google Scholar 

  132. Ohnesorge, B., Albrecht, M., Oshinowo, J., Forchel, A., Arakawa, Y.: Phys. Rev. B 54, 11532 (1996)

    Article  ADS  Google Scholar 

  133. Narvaez, G., Bester, G., Zunger, A.: Phys. Rev. B 74, 075403 (2006)

    Article  ADS  Google Scholar 

  134. Piwonski, T., O’Driscoll, I., Houlihan, J., Huyet, G., Manning, R.J., Uskov, A.V.: Appl. Phys. Lett. 90, 122108 (2007)

    Article  ADS  Google Scholar 

  135. Bogaart, E.W., Haverkort, J.E.M., Mano, T., van Lippen, T., Notzel, R., Wolter, J.H.: Phys. Rev. B 72, 195301 (2005)

    Article  ADS  Google Scholar 

  136. Mazur, Yu.I., Wang, Zh.M., Kissel, H., Zhuchenko, Z.Ya., Lisitsa, M.P., Tarasov, G.G., Salamo, G.J.: Semicond. Sci. Technol. 22, 86 (2007)

    Article  ADS  Google Scholar 

  137. Moskalenko, E.S., Donchev, V., Karlsson, K.F., Holtz, P.O., Monemar, B., Schoenfeld, W.V., Garcia, J.M., Petroff, P.M.: Phys. Rev. B 68, 155317 (2003)

    Article  ADS  Google Scholar 

  138. Toda, Y., Moriwaki, O., Nishioka, M., Arakawa, Y.: Phys. Rev. Lett. 82, 4114 (1999)

    Article  ADS  Google Scholar 

  139. Uskov, A.V., McInerney, J., Adler, F., Schweizer, H., Pilkuhn, M.H.: Appl. Phys. Lett. 72, 58 (1998)

    Article  ADS  Google Scholar 

  140. Deppe, D.G., Huffaker, D.L.: Appl. Phys. Lett. 77, 3325 (2000)

    Article  ADS  Google Scholar 

  141. Ding, F., Chen, Y.H., Tang, C.G., Xu, B., Wang, Z.G.: Phys. Rev. B 76, 125404 (2007)

    Article  ADS  Google Scholar 

  142. Fafard, S., Leonard, D., Merz, J.L., Petroff, P.M.: Appl. Phys. Lett. 65, 1388 (1994)

    Article  ADS  Google Scholar 

  143. Le Ru, E.C., Fack, J., Murray, R.: Phys. Rev. B 67, 245318 (2003)

    Article  ADS  Google Scholar 

  144. Leon, R., Fafard, S., Piva, P.G., Ruvimov, S., Liliental-Weber, Z.: Phys. Rev. B 58, R4262 (1998)

    Article  ADS  Google Scholar 

  145. Markussen, T., Kristensen, P., Tromborg, B., Berg, T.W., Mrk, J.: Phys. Rev. B 74, 195342 (2006)

    Article  ADS  Google Scholar 

  146. Matthews, D.R., Summers, H.D., Smowton, P.M., Blood, P., Rees, P., Hopkinson, M.: IEEE J. Quantum Electron. 41, 344 (2005)

    Article  ADS  Google Scholar 

  147. Müller, T., Schrey, F.F., Strasser, G., Unterrainer, K.: Appl. Phys. Lett. 83, 3572 (2003)

    Article  ADS  Google Scholar 

  148. Brübach, J., Silov, A.Yu., Haverkort, J.E.M., van der Vleuten, W., Wolter, J.H.: Phys. Rev. B 61, 833 (2000)

    Article  Google Scholar 

  149. Hinooda, S., Loualiche, S., Lambert, B., Bertru, N., Paillard, M., Marie, X., Amand, T.: Appl. Phys. Lett. 78, 3052 (2001)

    Article  ADS  Google Scholar 

  150. Lobo, C., Perret, N., Morris, D., Zou, J., Cockayne, D.J.H., Johnston, M.B., Gal, M., Leon, R.: Phys. Rev. B 62, 2737 (2000)

    Article  ADS  Google Scholar 

  151. Marcinkeviius, S., Leon, R.: Phys. Rev. B 59, 4630 (1999)

    Article  ADS  Google Scholar 

  152. Raymond, S., Hinzer, K., Fafard, S., Merz, J.L.: Phys. Rev. B R16, 331 (2000)

    Google Scholar 

  153. Polimeni, A., Patané, A., Henini, M., Eaves, L., Main, P.C.: Phys. Rev. B 59, 5064 (1999)

    Article  ADS  Google Scholar 

  154. Krivorotov, I.N., Chang, T., Gilliland, G.D., Fu, L.P., Bajaj, K.K., Wolford, D.J.: Phys. Rev. B 58, 10687 (1998)

    Article  ADS  Google Scholar 

  155. Zhuravlev, K.S., Petrakov, D.A., Gilinsky, A.M., Shamirzaev, T.S., Preobrazhenskii, V.V., Semyagin, B.R., Putyato, M.A.: Superlatt. Microstruct. 28, 105 (2000)

    Article  ADS  Google Scholar 

  156. Naritsuka, S., Kobayashi, O., Mitsuda, K., Nishinaga, T.: J. Crystal Growth 254, 310 (2003)

    Article  ADS  Google Scholar 

  157. Shamirzaev, T.S., Abramkin, D.S., Nenashev, A.V., Zhuravlev, K.S., Trojánek, F., Dzurnák, B., Malý, P.: Nanotechnology 21, 155703 (2010)

    Article  ADS  Google Scholar 

  158. Dabiran, A.M., Cohen, P.I.: J. Crystal Growth 150, 23–27 (1995)

    Article  ADS  Google Scholar 

  159. Koguchi, N., Ishige, K.: Jpn. J. Appl. Phys. 32(Part 1), 2052 (1993)

    Article  ADS  Google Scholar 

  160. Bajaj, K.K.: Mater. Sci. Eng. B 79, 203 (2001)

    Article  Google Scholar 

  161. Bimberg, D., Grundmann, M., Ledentsov, N.N.: Quantum Dot Heterostructures. Wiley, New York (1999)

    Google Scholar 

  162. Wang, Zh.M. (ed.): Lecture notes in nanoscale science and technology: Self-Assembled Quantum Dots. Springer, New York (2008)

    Google Scholar 

Download references

Acknowledgment

This work has being partially supported by RFBR via Grants 10-02-00513 and 10-08-00851.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Toropov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Galitsyn, Y.G., Lyamkina, A.A., Moshchenko, S.P., Shamirzaev, T.S., Zhuravlev, K.S., Toropov, A.I. (2012). Self-assembled Quantum Dots: From Stranski–Krastanov to Droplet Epitaxy. In: Bellucci, S. (eds) Self-Assembly of Nanostructures. Lecture Notes in Nanoscale Science and Technology, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0742-3_3

Download citation

Publish with us

Policies and ethics