Skip to main content

Natural Image Statistics in Digital Image Forensics

  • Chapter
  • First Online:
Digital Image Forensics

Abstract

The fundamental problem in digital image forensics is to differentiate tampered images from those of untampered ones. A general solution framework can be obtained using the statistical properties of natural photographic images. In the recent years, applications of natural image statistics in digital image forensics have witnessed rapid developments and led to promising results. In this chapter, we provide an overview of recent developments of natural image statistics, and focus on three applications of natural image statistics in digital image forensics as (1) differentiating photographic images from computer-generated photorealistic images, (2) generic steganalysis; (3) rebroadcast image detection.

Look deep into nature, and then you will understand everything better. Albert Einstein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daugman JG (1989) Entropy reduction and decorrelation in visual coding by oriented neural receptive fields. IEEE Trans Biomed Eng 36(1):107–114

    Article  Google Scholar 

  2. Kersten D (1987) Predictability and redundancy of natural images. J Opt Soc Am A, 4(12):2395–2400

    Google Scholar 

  3. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Mach Intell 11:674–693

    Article  MATH  Google Scholar 

  4. Westfeld A, F5. www.wrn.inf.tu-dresden.de/westfeld/f5

  5. Vaidyanathan PP (1987) Quadrature mirror filter banks, M-band extensions and perfect recon- struction techniques. IEEE ASSP Mag 4(3):4–20

    Google Scholar 

  6. Vetterli M (1987) A theory of multirate filter banks. IEEE Trans ASSP, 35(3):356–372

    Google Scholar 

  7. Upham D, Jsteg. http://ftp.funet.fi

  8. Hetzl S, Steghide. http://steghide.sourceforge.net

  9. Latham A, Jpeg Hide-and-Seek. http://linux01.gwdg.de/alatham/stego

  10. Provos N, Honeyman P (2002) Detecting steganographic content on the internet. In ISOC NDSSf02, San Diego, CA

    Google Scholar 

  11. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge

    Google Scholar 

  12. Ruderman DL, Bialek W (1994) Statistics of natural image: scaling in the woods. Phys Rev Lett 73(6):814–817

    Article  Google Scholar 

  13. Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A 4(12):2379–2394

    Article  Google Scholar 

  14. Buccigrossi RW, Simoncelli EP (1999) Image compression via joint statistical characteri- zation in the wavelet domain. IEEE Trans Image Process 8(12):1688–1701

    Article  Google Scholar 

  15. Gluckman J (2003) On the use of marginal statistics of subband images. In IEEE international conference on computer vision, Nice, France

    Google Scholar 

  16. Foley J, van Dam A, Feiner S, Hughes J (1997) Computer graphics: principles and practice. Addison-Wesley

    Google Scholar 

  17. Anderson RJ, Petitcolas FAP (1998) On the limits of steganography. IEEE J Sel Areas Commun 16(4):474–481

    Article  Google Scholar 

  18. Johnson N, Jajodia S (1998) Exploring steganography: seeing the unseen. IEEE Comput. 31(2):26–34

    Google Scholar 

  19. Kahn D (1996) The history of steganography. In proceedings of information hiding, First inter- national workshop, Cambridge, UK

    Google Scholar 

  20. Petitcolas EAP, Anderson RJ, Kuhn MG (1999) Information hiding—a survey. Proc IEEE 87(7):1062–1078

    Article  Google Scholar 

  21. Fridrich J, Goljan M, Hogea D (2003) New methodology for breaking steganographic techniques for JPEGs. In SPIE Symposium on Electronic Imaging, Santa Clara, CA

    Google Scholar 

  22. Duda RO, Hart PE, Stork DG (2000) Pattern classification. 2nd edn. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siwei Lyu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lyu, S. (2013). Natural Image Statistics in Digital Image Forensics. In: Sencar, H., Memon, N. (eds) Digital Image Forensics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0757-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0757-7_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0756-0

  • Online ISBN: 978-1-4614-0757-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics