Skip to main content

Tissue Engineering of Ligaments and Tendons

  • Chapter
  • First Online:
The ACL Handbook

Abstract

Tissue engineering is a creative process where cells, scaffolds, and growth factors are combined to form a construct that can be used to replace or regenerate injured tissues. Cells that are specific to the tissue of interest can be used (for ligament, one might select the fibroblast) or can be earlier progenitor cells (e.g., mesenchymal stem cells) that can be coerced into turning into fibroblasts. Cells can also be implanted with a scaffold or encouraged to come into a scaffold from the local environment in situ. Scaffolds can be mechanically strong, particular for replacing load bearing structures, or they can be purely biologic in function, for example, when supplementing a suture repair where the sutures will carry the load. The desired signaling molecules may be multiple and complex as presented in the prior chapter on wound healing; thus, autologous cells capable of releasing these factors over days to weeks might be useful as sustained delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  PubMed  CAS  Google Scholar 

  2. Mayo Robson A. Ruptured cruciate ligaments and their repair by operation. Ann Surg. 1903;37:716–8.

    Google Scholar 

  3. Sandberg R, Balkfors B, Nilsson B, Westlin N. Operative versus non-operative treatment of recent injuries to the ligaments of the knee. A prospective randomized study. J Bone Joint Surg Am. 1987;69(8):1120–6.

    PubMed  CAS  Google Scholar 

  4. Feagin Jr JA, Curl WW. Isolated tear of the anterior cruciate ligament: 5-year follow-up study. Am J Sports Med. 1976;4(3):95–100.

    Article  PubMed  Google Scholar 

  5. Ferretti A, Conteduca F, De Carli A, Fontana M, Mariani PP. Osteoarthritis of the knee after ACL reconstruction. Int Orthop. 1991;15(4):367–71.

    Article  PubMed  CAS  Google Scholar 

  6. Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50(10):3145–52.

    Article  PubMed  CAS  Google Scholar 

  7. Spindler KP, Warren TA, Callison Jr JC, Secic M, Fleisch SB, Wright RW. Clinical outcome at a minimum of five years after reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am. 2005;87(8):1673–9.

    Article  PubMed  Google Scholar 

  8. von Porat A, Roos EM, Roos H. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis. 2004;63(3):269–73.

    Article  Google Scholar 

  9. Frank C, Amiel D, Woo SL, Akeson W. Normal ligament properties and ligament healing. Clin Orthop Relat Res. 1985;(196):15–25.

    Google Scholar 

  10. Amiel D, Frank C, Harwood F, Fronek J, Akeson W. Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res. 1984;1(3):257–65.

    Article  PubMed  CAS  Google Scholar 

  11. Murray MM, Martin SD, Martin TL, Spector M. Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Surg Am. 2000;82(10):1387–97.

    PubMed  Google Scholar 

  12. Murray MM, Bennett R, Zhang X, Spector M. Cell outgrowth from the human ACL in vitro: regional variation and response to TGF-beta1. J Orthop Res. 2002;20(4):875–80.

    Article  PubMed  CAS  Google Scholar 

  13. Murray MM, Spector M. The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro. Biomaterials. 2001;22(17):2393–402.

    Article  PubMed  CAS  Google Scholar 

  14. Nehrer S, Breinan HA, Ramappa A, et al. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res. 1997;38(2):95–104.

    Article  PubMed  CAS  Google Scholar 

  15. Dorotka R, Toma CD, Bindreiter U, Zehetmayer S, Nehrer S. Characteristics of ovine articular chondrocytes in a three-dimensional matrix consisting of different crosslinked collagen. J Biomed Mater Res B Appl Biomater. 2005;72(1):27–36.

    Article  PubMed  Google Scholar 

  16. Bellincampi LD, Closkey RF, Prasad R, Zawadsky JP, Dunn MG. Viability of fibroblast-­seeded ligament analogs after autogenous implantation. J Orthop Res. 1998;16(4):414–20.

    Article  PubMed  CAS  Google Scholar 

  17. Dunn MG, Liesch JB, Tiku ML, Zawadsky JP. Development of fibroblast-seeded ligament analogs for ACL reconstruction. J Biomed Mater Res. 1995;29(11):1363–71.

    Article  PubMed  CAS  Google Scholar 

  18. Wiig ME, Amiel D, VandeBerg J, Kitabayashi L, Harwood FL, Arfors KE. The early effect of high molecular weight hyaluronan (hyaluronic acid) on anterior cruciate ligament healing: an experimental study in rabbits. J Orthop Res. 1990;8(3):425–34.

    Article  PubMed  CAS  Google Scholar 

  19. Cristino S, Grassi F, Toneguzzi S, et al. Analysis of mesenchymal stem cells grown on a three-­dimensional HYAFF 11-based prototype ligament scaffold. J Biomed Mater Res A. 2005;73(3): 275–83.

    PubMed  CAS  Google Scholar 

  20. Smith Jr GN, Mickler EA, Myers SL, Brandt KD. Effect of intraarticular hyaluronan injection on synovial fluid hyaluronan in the early stage of canine post-traumatic osteoarthritis. J Rheumatol. 2001;28(6):1341–6.

    PubMed  CAS  Google Scholar 

  21. Sonoda M, Harwood FL, Amiel ME, Moriya H, Amiel D. The effects of hyaluronan on the meniscus in the anterior cruciate ligament-deficient knee. J Orthop Sci. 2000;5(2):157–64.

    Article  PubMed  CAS  Google Scholar 

  22. Lee CH, Shin HJ, Cho IH, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials. 2005;26(11):1261–70.

    Article  PubMed  CAS  Google Scholar 

  23. Chen J, Altman GH, Karageorgiou V, et al. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A. 2003;67(2): 559–70.

    Article  PubMed  Google Scholar 

  24. Deuel T, Chang Y. Growth factors. 3rd ed. Academic Press; Waltham, MA. 2007.

    Google Scholar 

  25. Vavken P, Saad FA, Fleming BC, Murray MM. VEGF receptor mRNA expression by ACL fibroblasts is associated with functional healing of the ACL. Knee Surg Sports Traumatol Arthrosc. 2011;19(10):1675–82.

    Article  PubMed  Google Scholar 

  26. Vavken P, Saad FA, Murray MM. Age dependence of expression of growth factor receptors in porcine ACL fibroblasts. J Orthop Res. 2010;28(8):1107–12.

    PubMed  CAS  Google Scholar 

  27. Rodeo SA, Potter HG, Kawamura S, Turner AS, Kim HJ, Atkinson BL. Biologic augmentation of rotator cuff tendon-healing with use of a mixture of osteoinductive growth factors. J Bone Joint Surg Am. 2007;89(11):2485–97.

    Article  PubMed  Google Scholar 

  28. Goulet F, Germaine L, Rancourt D, Caron C, Nromand A, Aufer F. Tendons and ligaments. 3rd ed. Elsevier; Amsterdam, Netherlands. 2007.

    Google Scholar 

  29. Murray MM, Spindler KP, Devin C, et al. Use of a collagen-platelet rich plasma scaffold to stimulate healing of a central defect in the canine ACL. J Orthop Res. 2006;24(4):820–30.

    Article  PubMed  CAS  Google Scholar 

  30. Murray MM, Spindler KP, Ballard P, Welch TP, Zurakowski D, Nanney LB. Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold. J Orthop Res. 2007;25(8):1007–17.

    Article  PubMed  CAS  Google Scholar 

  31. Murray MM, Spindler KP, Abreu E, et al. Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J Orthop Res. 2007;25(1):81–91.

    Article  PubMed  Google Scholar 

  32. Vavken P et al. Biomechanical outcomes after bioenhanced anterior cruciate ligament repair and anterior cruciate ligament reconstruction are equal in a porcine model. Arthroscopy. 2012;28(5):672–80.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Research reported in this chapter was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers RO1-AR054099 and RO1-AR056834. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Vavken MD, MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vavken, P., Murray, M.M. (2013). Tissue Engineering of Ligaments and Tendons. In: Murray, M., Vavken, P., Fleming, B. (eds) The ACL Handbook. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0760-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0760-7_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0759-1

  • Online ISBN: 978-1-4614-0760-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics