Skip to main content

Use of Biologics to Treat Partial ACL Tears

  • Chapter
  • First Online:
The ACL Handbook
  • 3628 Accesses

Abstract

The completely torn ACL is both biologically challenged (due to the lack of provisional scaffold formation) and mechanically challenged (due to the difficulty in suturing fibrous tissue ends together). To help decouple the challenges and allow us to first focus on the biologic problem, we needed an in vivo partial ACL tear model. One such model was developed in collaboration with Kurt Spindler at Vanderbilt University. In this model, the central fibers of the ACL are cut, but the fibers on either side of the defect are left intact, thus providing optimal mechanical stability of the defect. Using this model, we were able to demonstrate that the use of a collagen-platelet composite could stimulate biologic and functional healing of a partial ACL defect. The next chapter will then add in the mechanical challenges of a complete ACL tear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hefti FL, Kress I, Fasel J, Morscher EW. Healing of the transected anterior cruciate ligament in the rabbit. J Bone Joint Surg Am. 1991;73:373–83.

    PubMed  CAS  Google Scholar 

  2. Murray MM, Spindler KP, Abreu E, et al. Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J Orthop Res. 2007;25(1):81–91.

    Article  PubMed  Google Scholar 

  3. Murray MM, Fleming BC, Abreu E, et al. Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. International Symposium of Ligament and Tendon. San Francisco; 2008.

    Google Scholar 

  4. Murray MM, Spindler KP, Devin C, et al. Use of a collagen-platelet rich plasma scaffold to stimulate healing of a central defect in the canine ACL. J Orthop Res. 2006;24(4):820–30.

    Article  PubMed  CAS  Google Scholar 

  5. Murray MM et al. Current status and potential of primary ACL repair. Clin Sports Med. 2009;28:51–61.

    Article  PubMed  Google Scholar 

  6. Spindler KP, Murray MM, Detwiler KB, et al. The biomechanical response to doses of TGF-­beta 2 in the healing rabbit medial collateral ligament. J Orthop Res. 2003;21(2):245–9.

    Article  PubMed  CAS  Google Scholar 

  7. Hildebrand KA, Woo SL, Smith DW, et al. The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament. An in vivo study. Am J Sports Med. 1998;26(4):549–54.

    PubMed  CAS  Google Scholar 

  8. Woo SL, Smith DW, Hildebrand KA, Zeminski JA, Johnson LA. Engineering the healing of the rabbit medial collateral ligament. Med Biol Eng Comput. 1998;36(3):359–64.

    Article  PubMed  CAS  Google Scholar 

  9. Kobayashi D, Kurosaka M, Yoshiya S, Mizuno K. Effect of basic fibroblast growth factor on the healing of defects in the canine anterior cruciate ligament [see comments]. Knee Surg Sports Traumatol Arthrosc. 1997;5(3):189–94.

    Article  PubMed  CAS  Google Scholar 

  10. Murray MM, Martin SD, Spector M. Migration of cells from human anterior cruciate ligament explants into collagen-glycosaminoglycan scaffolds. J Orthop Res. 2000;18(4):557–64.

    Article  PubMed  CAS  Google Scholar 

  11. Murray MM, Spector M. The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro. Biomaterials. 2001;22(17):2393–402.

    Article  PubMed  CAS  Google Scholar 

  12. Murray MM, Bennett R, Zhang X, Spector M. Cell outgrowth from the human ACL in vitro: regional variation and response to TGF-beta1. J Orthop Res. 2002;20(4):875–80.

    Article  PubMed  CAS  Google Scholar 

  13. Meaney Murray M, Rice K, Wright RJ, Spector M. The effect of selected growth factors on human anterior cruciate ligament cell interactions with a three-dimensional collagen-GAG scaffold. J Orthop Res. 2003;21(2):238–44.

    Article  PubMed  CAS  Google Scholar 

  14. Kroon ME, van Schie ML, van der Vecht B, van Hinsbergh VW, Koolwijk P. Collagen type 1 retards tube formation by human microvascular endothelial cells in a fibrin matrix. Angiogenesis. 2002;5(4):257–65.

    Article  PubMed  CAS  Google Scholar 

  15. Murray MM, Forsythe B, Chen F, et al. The effect of thrombin on ACL fibroblast interactions with collagen hydrogels. J Orthop Res. 2006;24(3):508–15.

    Article  PubMed  CAS  Google Scholar 

  16. Spindler KP, Andrish JT, Miller RR, Tsujimoto K, Diz DI. Distribution of cellular repopulation and collagen synthesis in a canine anterior cruciate ligament autograft. J Orthop Res. 1996;14(3):384–9.

    Article  PubMed  CAS  Google Scholar 

  17. Spindler KP, Murray MM, Devin C, Nanney LB, Davidson JM. The central ACL defect as a model for failure of intra-articular healing. J Orthop Res. 2006;24(3):401–6.

    Article  PubMed  CAS  Google Scholar 

  18. Murray MM, Spindler KP, Abreu E, et al. Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J Orthop Res. 2007;25(1):81–91.

    Article  PubMed  Google Scholar 

  19. Murray MM, Spindler KP, Ballard P, Welch TP, Zurakowski D, Nanney LB. Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich plasma scaffold. J Orthop Res. 2007;25(8):1007–17.

    Article  PubMed  CAS  Google Scholar 

  20. Murray MM, Weiler A, Spindler KP. Interspecies variation in the fibroblast distribution of the anterior cruciate ligament. Am J Sports Med. 2004;32(6):1484–91.

    Article  PubMed  Google Scholar 

  21. Woo SLY, Horibe S, Ohland KJ, Amiel D. The response of ligaments to injury: healing of the collateral ligaments. In: Daniel D, editor. Knee ligaments: structure, function, injury and repair. New York: Raven Press; 1990.

    Google Scholar 

  22. Wiig M, Amiel D, Ivarsson M, Nagineni C, Wallace C, Arfors K. Type I procollagen gene expression in normal and early healing of the medial collateral and anterior cruciate ligaments in rabbits: an in situ hybridization study. J Orthop Res. 1991;9:374–82.

    Google Scholar 

  23. Bray RC, Rangayyan RM, Frank CB. Normal and healing ligament vascularity: a quantitative histological assessment in the adult rabbit medial collateral ligament. J Anat. 1996;188:87–95.

    Google Scholar 

  24. Frank C, Schachar N, Dittrich D. Natural history of healing in the repaired medial collateral ligament. J Orthop Res. 1983;1:179–88.

    Google Scholar 

  25. Evans CH: Cytokines and the role they play in the healing of ligaments and tendons. Sports Medicine. 1999; 28:71–6.

    Google Scholar 

  26. Tsubone, T, Moran SL, Amadio, PC, Zhao C, An KN. Expression of growth factors in canine flexor tendon after laceration in vivo. Ann Plastic Surg. 2004;53(4):393–7.

    Google Scholar 

  27. Natsu-ume T, Nakamura N, Shino K, Toritsuka Y, Horibe S, Ochi T. Temporal and spatial expression of transforming growth factor-beta in the healing patellar ligament of the rat. J Orthop Res. 1997;15(6):837–43.

    Google Scholar 

  28. Yalamanchi N, Klein MB, Pham HM, Longaker MT, Chang J. Flexor tendon wound healing in vitro: lactate up-regulation of TGF-beta expression and functional activity. Plast Reconstr Surg. 2004;113(2):625–32.

    Google Scholar 

  29. Sciore P, Boykiw R, Hart DA. Semiquantitative reverse transcription-polymerase chain reaction analysis of mRNA for growth factors and growth factor receptors from normal and healing rabbit medial collateral ligament tissue. J Orthop Res. 1998;16(4):429–37.

    Google Scholar 

  30. Panossian V, Liu SH, Lane JM, Finerman GA. Fibroblast growth factor and epidermal growth factor receptors in ligament healing. Clin Orthop Relat Res. 1997;(342):173–80.

    Google Scholar 

Download references

Acknowledgement

Research reported in this chapter was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number RO1-AR054099. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha M. Murray MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murray, M.M. (2013). Use of Biologics to Treat Partial ACL Tears. In: Murray, M., Vavken, P., Fleming, B. (eds) The ACL Handbook. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0760-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0760-7_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0759-1

  • Online ISBN: 978-1-4614-0760-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics