Skip to main content

Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks

  • Chapter
  • First Online:
Handbook of Optimization in Complex Networks

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 58))

Abstract

Complex biological, social, and technological systems can be often modeled by weighted networks. The network topology, together with the distribution of available link or node capacity (represented by weights) and subject to cost constraints, strongly affect the dynamics or performance of the networks. Here, we investigate optimization in fundamental synchronization and flow problems where the weights are proportional to (k i k j )β with k i and k j being the degrees of the nodes connected by the edge. In the context of synchronization, these weights represent the allocation of limited resources (coupling strength), while in the associated random walk and current flow problems, they control the extent of hub avoidance, relevant in routing and search. In this chapter, we review fundamental connections between stochastic synchronization, random walks, and current flow, and we discuss optimization problems for these processes in the above weighted networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

 eferences

  1. S.H. Strogatz, Nature 410, 268 (2001).

    Google Scholar 

  2. S.H. Strogatz, Synch: the Emerging Science of Spontaneous Order (Hyperion, New York. 2003).

    Google Scholar 

  3. S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, Phys. Rep. 366, 1 (2002).

    MathSciNet  MATH  Google Scholar 

  4. J.A. Acebrón, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, and R. Spigler, Rev. Mod. Phys. 77, 137 (2005).

    Google Scholar 

  5. A. Arenas et al., Phys. Rep.469, 93 (2008).

    Google Scholar 

  6. R. Olfati-Saber, J.A. Fax, and R.M. Murray, Proc. IEEE 95, 215 (2007).

    Google Scholar 

  7. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: Theory, Algorithms, and Applications (Prentice Hall, Englewood Cliffs, NJ, 1993).

    MATH  Google Scholar 

  8. B. Tadic, G.J. Rodgers, and S. Thurner, Int. J. Bifurcation and Chaos, 17, 2363 (2007).

    MATH  Google Scholar 

  9. L.K. Gallos, C. Song, S. Havlin, and H.A. Makse, Proc. Natl. Acad. Sci. USA 104, 7746 (2007).

    Google Scholar 

  10. G. Korniss, Phys. Rev. E 75, 051121 (2007).

    Google Scholar 

  11. A. Schrijver, “Flows in railway optimization”, Nieuw Archief voor Wiskunde 5/9 126 (2008).

    Google Scholar 

  12. D.J. Watts and S.H. Strogatz, Nature 393, 440 (1998).

    Google Scholar 

  13. A.-L. Barabási and R. Albert, Science 286, 509 (1999).

    MathSciNet  Google Scholar 

  14. R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).

    Google Scholar 

  15. S.N. Dorogovtsev and J.F.F. Mendes, Adv. in Phys. 51, 1079 (2002).

    Google Scholar 

  16. M.E.J. Newman, SIAM Review 45, 167 (2003).

    Google Scholar 

  17. L. Li, D. Alderson, R. Tanaka, J.C. Doyle, W. Willinger, Internet Math. 2, 431 (2005); arXiv:cond-mat/0501169.

    Google Scholar 

  18. R. Pastor-Satorras and Alessandro Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge University Press, 2004).

    Google Scholar 

  19. S. Boccaletti, V. Latora Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424 175 (2006).

    MathSciNet  Google Scholar 

  20. A. Barrat, M. Barthelemy, and Alessandro Vespignani, Dynamical processes in complex networks (Cambridge University Press, 2008).

    Google Scholar 

  21. G. Korniss, M.A. Novotny, H. Guclu, and Z. Toroczkai, P.A. Rikvold, Science 299, 677 (2003).

    Google Scholar 

  22. R. Olfati-Saber and R.M. Murray, IEEE Trans. Automat. Contr. 49, 1520 (2004).

    MathSciNet  Google Scholar 

  23. R. Olfati-Saber, in Proc. American Control Conf. (IEEE, Los Alamitos, CA, 2005). pp. 2371–2378.

    Google Scholar 

  24. C.W. Reynolds, Computer Graphics, 21, 25 (1987).

    Google Scholar 

  25. T. Vicsek et al., Phys. Rev. Lett. 75, 1226 (1995).

    Google Scholar 

  26. F. Cucker and S. Smale, IEEE Trans. Automat. Contr. 52, 852 (2007).

    MathSciNet  Google Scholar 

  27. J.A. Fax and R.M. Murray, IEEE Trans. Automat. Contr. 49, 1465 (2004).

    MathSciNet  Google Scholar 

  28. T.I. Netoff, R. Clewley, S. Arno, T. Keck, and J.A. White, The Journal of Neuroscience 24, 8075 (2004).

    Google Scholar 

  29. G. Grinstein and R. Linsker, Proc. Natl. Acad. Sci. USA 102, 9948 (2005).

    Google Scholar 

  30. E. Izhikevich, SIAM Rev. 43, 315 (2001).

    MathSciNet  MATH  Google Scholar 

  31. Q. Wang, Z. Duan, M. Perc, and G. Chen, Europhys. Lett. 83, 50008 (2008).

    Google Scholar 

  32. Q. Wang, M. Perc, Z. Duan, and G. Chen, Phys. Rev. E 80, 026206 (2009).

    Google Scholar 

  33. A.T. Winfree, J. Theor. Biol. 16, 15 (1967).

    Google Scholar 

  34. D. Lusseau, B. Wilson, P.S. Hammond, K. Grellier, J.W. Durban, K.M. Parsons, T.R. Barton, P.M. Thompson, Journal of Animal Ecology 75, 14 (2006).

    Google Scholar 

  35. Y. Rabani, A. Sinclair, and R. Wanka, “Local Divergence of Markov Chains and the Analysis of Iterative Load-Balancing Schemes”, in Proc, 39th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Washington, DC, 1998) pp. 694–702.

    Google Scholar 

  36. G. Korniss, Z. Toroczkai, M.A. Novotny, and P.A. Rikvold, Phys. Rev. Lett. 84, 1351 (2000).

    Google Scholar 

  37. P.M.A. Sloot, B.J. Overeinder, and A. Schoneveld, Comput. Phys. Commun. 142, 76 (2001).

    MATH  Google Scholar 

  38. S. Kirkpatrick, Science 299, 668 (2003).

    Google Scholar 

  39. A. Kolakowska and M. A. Novotny, in Artificial Intelligence and Computer Science, edited by S. Shannon (Nova Science Publishers, Inc., New York, 2005), pp. 151–176.

    Google Scholar 

  40. A. Schrijver, Mathematical Programming, 91, 437 (2002).

    MathSciNet  MATH  Google Scholar 

  41. A. N. Tolstoi, in Transportation Planning, Vol. I, (TransPress of the National Commissariat of Transportation, Moscow, 1930) pp. 23.55.

    Google Scholar 

  42. F.L. Hitchcock, J. of Math. and Phys. 20, 224 (1941).

    MathSciNet  Google Scholar 

  43. L.V. Kantorovich and M.K. Gavurin, in Collection of Problems of Raising the Efficiency of Transport Performance, Akademiia Nauk SSSR, Moscow-Leningrad, 1949, pp. 110–138.

    Google Scholar 

  44. Tj.C. Koopmans, Econometrica 17 (Supplement), 136 (1949).

    Google Scholar 

  45. T.E. Harris, F.S. Ross, “Fundamentals of a Method for Evaluating Rail Net Capacities”, Research Memorandum RM-1573, The RAND Corporation, Santa Monica, California, 1955.

    Google Scholar 

  46. L.R. Ford and D.R. Fulkerson, “Maximal Flow through a Network”, Research Memorandum RM-1400, The RAND Corporation, Santa Monica, CA, 1954; Canadian J. Math. 8, 399 (1956).

    MathSciNet  MATH  Google Scholar 

  47. L.R. Ford and D.R. Fulkerson, Flows in Networks (Princeton University Press, Princeton, NJ, 1962).

    MATH  Google Scholar 

  48. D.L. Alderson, Operations Research 56, 1047 (2008).

    MathSciNet  MATH  Google Scholar 

  49. L. Donetti, F. Neri, and M.A. Munoz, J. Stat. Mech. P08007 (2006).

    Google Scholar 

  50. P. J. Macdonald, E. Almaas, A.-L. Barabási, Europhys. Lett. 72, 308 (2005).

    Google Scholar 

  51. A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, Proc. Natl. Acad. Sci. USA 101, 3747 (2004).

    Google Scholar 

  52. K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. Lett. 87, 278701 (2001).

    Google Scholar 

  53. K.-I. Goh, J.D. Noh, B. Kahng, and D. Kim, Phys. Rev. E 72, 017102 (2005).

    Google Scholar 

  54. J.D. Noh and H. Rieger, Phys. Rev. Lett. 92, 118701 (2004).

    Google Scholar 

  55. L.K. Gallos, Phys. Rev. E 70, 046116 (2004).

    Google Scholar 

  56. E. Almaas, R.V. Kulkarni, and D. Stroud, Phys. Rev E 68, 056105 (2003).

    Google Scholar 

  57. M. Argollo de Menezes and A.-L. Barabási, Phys. Rev. Lett. 92 028701 (2004).

    Google Scholar 

  58. E. Almaas, B. Kovacs, T. Vicsek, Z.N. Oltvai and A.-L. Barabási, Nature 427, 839 (2004).

    Google Scholar 

  59. Z. Toroczkai and K. Bassler, Nature 428, 716 (2004).

    Google Scholar 

  60. R. Guimerà, S. Mossa, A. Turtschi, and L.A.N. Amaral, Proc. Natl. Acad. Sci. USA 102, 7794 (2005).

    MathSciNet  MATH  Google Scholar 

  61. K. Park, Y.-C. Lai, L. Zhao, and N. Ye, Phys. Rev. E 71, 065105(R) (2005).

    Google Scholar 

  62. D.J. Ashton, T.C. Jarrett, and N.F. Johnson, Phys. Rev. Lett. 94, 058701 (2005).

    Google Scholar 

  63. D.-S. Lee and H. Rieger, Europhys. Lett. 73, 471 (2006).

    MathSciNet  Google Scholar 

  64. D. Brockmann, L. Hufnagel, and T. Geisel, Nature 439, 462 (2006).

    Google Scholar 

  65. V. Colizza, A. Barrat, M. Barthélemy, and A. Vespignani, Proc. Natl. Acad. Sci. USA 103, 2015 (2006).

    Google Scholar 

  66. W. Krause, I. Glauche, R. Sollacher, and M. Greiner, Physica A 338, 633 (2004).

    MathSciNet  Google Scholar 

  67. R. Guimerà, A. Díaz-Guilera, F. Vega-Redondo, A. Cabrales, and A. Arenas, Phys. Rev. Lett. 89, 248701 (2002).

    Google Scholar 

  68. B. Tadić, S. Thurner, G.J. Rodgers, Phys. Rev. E 69, 036102 (2004).

    Google Scholar 

  69. P.E. Parris and V.M. Kenkre, Phys. Rev E 72, 056119 (2005).

    Google Scholar 

  70. L. Zhao, Y.-C. Lai, K. Park, and Nong Ye, Phys. Rev. E 71, 026125 (2005).

    Google Scholar 

  71. S. Sreenivasan, R. Cohen, E. López, Z. Toroczkai, and H.E. Stanley, Phys. Rev. E. 75, 036105 (2007).

    Google Scholar 

  72. B. Danila, Y. Yu, S. Earl, J.A. Marsh, Z. Toroczkai, and K.E. Bassler, Phys. Rev. E 74, 046114 (2006).

    Google Scholar 

  73. B. Danila, Y. Yu, J.A. Marsh, and K.E. Bassler, Phys. Rev. E 74, 046106 (2006).

    Google Scholar 

  74. B. Danila, Y. Yu, J.A. Marsh, and K.E. Bassler, Chaos 17, 026102 (2007).

    MathSciNet  Google Scholar 

  75. T. Antal and P.L. Krapivsky, Phys. Rev. E 74, 051110 (2006).

    MathSciNet  Google Scholar 

  76. A. Nagurney and Q. Qiang, Europhys. Lett. 79, 38005 (2007).

    Google Scholar 

  77. A. Nagurney and Q. Qiang, Europhys. Lett. 80, 68001 (2007).

    MathSciNet  Google Scholar 

  78. D.J. Aldous, “Cost-volume relationships for flows through a disordered network”, Math. Oper. Res. 33, 769 (2008).

    MathSciNet  MATH  Google Scholar 

  79. J.S. Andrade, Jr., H.J. Herrmann, R.F.S. Andrade, and L.R. da Silva, Phys. Rev. Lett. 94, 018702 (2005).

    Google Scholar 

  80. E. López, S.V. Buldyrev, S. Havlin, and H.E. Stanley, Phys. Rev. Lett. 94, 248701 (2005).

    Google Scholar 

  81. S. Carmi, Z. Wu, E. López, S. Havlin, and H.E. Stanley, Eur. Phys. J. B 57, 165 (2007).

    MathSciNet  MATH  Google Scholar 

  82. Z. Wu, L.A. Braunstein, S. Havlin, and H.E. Stanley, Phys. Rev. Lett. 96, 148702 (2006).

    Google Scholar 

  83. M. Barthélemy and A. Flammini, J. Stat. Mech. L07002 (2006).

    Google Scholar 

  84. P.G. Doyle and J.L. Snell, Random Walks and Electric Networks, Carus Mathematical Monograph Series Vol. 22 (The Mathematical Association of America, Washington, DC, 1984), pp. 83–149; arXiv:math.PR/0001057.

    Google Scholar 

  85. L. Lovász, Random Walks on Graphs: A Survey in Combinatorics, Paul Erdős is Eighty Vol. 2, edited by D. Miklós, V.T. Sós, and T. Szőnyi (János Bolyai Mathematical Society, Budapest, 1996), pp. 353-398; http://research.microsoft.com/users/lovasz/erdos.ps.

    Google Scholar 

  86. S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, UK, 2001).

    MATH  Google Scholar 

  87. G. Korniss, M.B. Hastings, K.E. Bassler, M.J. Berryman, B. Kozma, and D. Abbott, Phys. Lett. A 350, 324 (2006).

    MATH  Google Scholar 

  88. C. Zhou, A.E. Motter, and J. Kurths, Phys. Rev. Lett. 96, 034101 (2006).

    Google Scholar 

  89. W.-X. Wang and G. Chen, Phys. Rev. E 77, 026101 (2008).

    Google Scholar 

  90. R. Yang, W.-X. Wang, Y.-C. Lai, and G. Chen, Phys. Rev. E 79, 026112 (2009).

    Google Scholar 

  91. A. Baronchelli and R. Pastor-Satorras, Phys. Rev. E 82, 011111 (2010).

    Google Scholar 

  92. R. Huang, “Flow Optimization in Complex Networks”, M.S. Thesis, Rensselaer Polytechnic Institute, Troy, NY (2010).

    Google Scholar 

  93. Y. Kuramoto, in Proceedings of the International Symposium on Mathematical Problems in Theoretical Physics, edited by H. Araki, Lecture Notes in Physics Vol. 39 (Springer, New York, 1975) pp. 420–422.

    Google Scholar 

  94. H. Hong, M.Y. Choi, and B.J. Kim, Phys. Rev. E 65, 026139 (2002).

    Google Scholar 

  95. T. Ichinomiya, Phys. Rev. E 70, 026116 (2004).

    Google Scholar 

  96. D.-S. Lee, Phys. Rev. E 72, 026208 (2005).

    Google Scholar 

  97. M. Barahona and L.M. Pecora, Phys. Rev. Lett. 89, 054101 (2002).

    Google Scholar 

  98. T. Nishikawa, A.E. Motter, Y.-C. Lai, and F.C. Hoppensteadt, Phys. Rev. Lett. 91, 014101 (2003).

    Google Scholar 

  99. A.E. Motter, C. Zhou, and J. Kurths, Europhys. Lett. 69, 334 (2005).

    Google Scholar 

  100. A.E. Motter, C. Zhou, and J. Kurths, Phys. Rev. E. 71, 016116 (2005).

    Google Scholar 

  101. C. Zhou and J. Kurths, Chaos 16, 015104 (2006).

    MathSciNet  Google Scholar 

  102. L.M. Pecora and T.L.Carroll, Phys. Rev. Lett 80, 2109 (1998).

    Google Scholar 

  103. S.M. Park and B.J. Kim, Phys. Rev E 74, 026114 (2006).

    Google Scholar 

  104. T. Nishikawa and A.E. Motter, Phys. Rev. E 73, 065106(R) (2006).

    Google Scholar 

  105. T. Nishikawa and A.E. Motter, Proc. Natl. Acad. Sci. U.S.A. 107, 10342 (2010).

    Google Scholar 

  106. Z. Toroczkai, G. Korniss, M. A. Novotny, and H. Guclu, in Computational Complexity and Statistical Physics, edited by A. Percus, G. Istrate, and C. Moore, Santa Fe Institute Studies in the Sciences of Complexity Series (Oxford University Press, 2005), pp. 249–270; arXiv:cond-mat/0304617.

    Google Scholar 

  107. H. Guclu, G. Korniss, Z. Toroczkai, Chaos 17, 026104 (2007).

    MathSciNet  Google Scholar 

  108. A. Nagurney, J. Cruz, J. Dong, and D. Zhang, European Journal of Operational Research 26, 120 (2005).

    Google Scholar 

  109. S.F. Edwards and D.R. Wilkinson, Proc. R. Soc. London, Ser A 381, 17 (1982).

    Google Scholar 

  110. B. Kozma and G. Korniss, in Computer Simulation Studies in Condensed Matter Physics XVI, edited by D.P. Landau, S.P. Lewis, and H.-B. Schüttler, Springer Proceedings in Physics Vol. 95 (Springer-Verlag, Berlin, 2004), pp. 29–33.

    Google Scholar 

  111. B. Kozma, M. B. Hastings, and G. Korniss, Phys. Rev. Lett. 92, 108701 (2004).

    Google Scholar 

  112. B. Kozma, M. B. Hastings, and G. Korniss, Phys. Rev. Lett. 95, 018701 (2005).

    Google Scholar 

  113. B. Kozma, M.B. Hastings, and G. Korniss, in Noise in Complex Systems and Stochastic Dynamics III, edited by L.B. Kish, K. Lindenberg, Z. Gingl, Proceedings of SPIE Vol. 5845 (SPIE, Bellingham, WA, 2005) pp.130–138.

    Google Scholar 

  114. M. B. Hastings, Eur. Phys. J. B 42, 297 (2004).

    Google Scholar 

  115. D. Hunt, G. Korniss, and B.K. Szymanski, Phys. Rev. Lett. 105, 068701 (2010).

    Google Scholar 

  116. C. E. La Rocca, L. A. Braunstein, and P. A. Macri, Phys. Rev. E 77, 046120 (2008).

    Google Scholar 

  117. C. E. La Rocca, L. A. Braunstein, and P. A. Macri, Phys. Rev. E 80, 026111 (2009).

    Google Scholar 

  118. M. Catanzaro, M. Boguña, and R. Pastor-Satorras, Phys. Rev. E 71, 027103 (2005).

    Google Scholar 

  119. M.E.J. Newman and D.J. Watts, Phys. Lett. A 263, 341 (1999).

    MathSciNet  MATH  Google Scholar 

  120. R. Monasson, Eur. Phys. J. B 12, 555 (1999).

    Google Scholar 

  121. S. Kirkpatrick, Phys. Rev. Lett. 27, 1722 (1971).

    Google Scholar 

  122. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).

    Google Scholar 

  123. M.E.J. Newman and M. Girvan, Phys. Rev. E 69, 026113 (2004).

    Google Scholar 

  124. F. Wu and B.A. Huberman, Eur. Phys. J. B. 38, 331 (2004).

    Google Scholar 

  125. C. Faloutsos, K.S. McCurley, and A. Tomkins, in Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM Press, New York, 2004) pp. 118–127.

    Google Scholar 

  126. M.E.J. Newman, Social Networks 27, 39 (2005).

    Google Scholar 

  127. U. Brandes and D. Fleischer, Lecture Notes in Computer Science, edited by V. Diekert and B. Durand (Springer, NY, 2005) Vol. 3404, pp. 533–544.

    Google Scholar 

  128. R. Kaul, Y. Yun, and S.-G. Kim, Comm. ACM 52, 132 (2009).

    Google Scholar 

  129. F.Y. Wu, J. Phys. A 37, 6653 (2004).

    MathSciNet  MATH  Google Scholar 

  130. A.K. Chandra, P. Raghavan, W.L. Ruzzo, and R. Smolensky, in Proceedings of the 21st Annnual ACM Symposium on the Theory of Computing (ACM Press, New York, 1989), pp. 574–586.

    Google Scholar 

  131. P. Tetali, J. Theor. Prob. 4 101 (1991).

    MathSciNet  MATH  Google Scholar 

  132. L. Adamic, R.M. Lukose, A.R. Puniyani, and B.A. Huberman, Phys. Rev. E 64 046135 (2001).

    Google Scholar 

  133. H.P. Thadakamalla, R. Albert, and S.R.T. Kumara, Phys. Rev. E 72 066128 (2005).

    Google Scholar 

  134. L.C. Freeman, Sociometry 40, 35 (1977).

    Google Scholar 

  135. L.C. Freeman, Social Networks 1, 215 (1979).

    Google Scholar 

  136. J.D.C. Little, Operations Res. 9, 383 (1961).

    MathSciNet  MATH  Google Scholar 

  137. A.O. Allen, Probability, Statistics, and Queueing Theory with Computer Science Applications, 2nd ed. (Academic Press, Boston, 1990).

    MATH  Google Scholar 

  138. M. Boguña, R. Pastor- Satorras, and A. Vespignani, Eur. Phys. J. B 38, 205 (2004).

    Google Scholar 

  139. R. Albert. H. Jeong, and A.-L. Barabási, Nature 406, 378 (2000).

    Google Scholar 

  140. R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000).

    Google Scholar 

  141. R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 86, 3682 (2001).

    Google Scholar 

  142. Y. Moreno, R. Pastor-Satorras, A. Vázquez, and A. Vespignani, Europhys. Lett. 62, 292 (2006).

    Google Scholar 

  143. L. Dall’Asta, A. Barrat, M. Barthélemy, and A. Vespignani, J. Stat. Mech. P04006 (2006).

    Google Scholar 

  144. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery Numerical Recipes in C, 2nd ed. (Cambridge Univ. Press, Cambridge, 1995), Secs. 11.2 and 11.3.

    Google Scholar 

  145. P. Erdős and A. Rényi, Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960).

    Google Scholar 

  146. M. Barthélemy, Eur. Phys. J, B 38, 1434 (2004)

    Google Scholar 

  147. M. Molloy and B. Reed, Random. Struct. Algorithms 6, 161 (1995).

    MathSciNet  MATH  Google Scholar 

  148. Jeffrey Sachs, Scientific American 300, 34 (2009).

    Google Scholar 

  149. A.E. Motter and Y.-C. Lai, Phys. Rev. E 66, 065102(R) (2002).

    Google Scholar 

  150. L. Zhao, K. Park, and Y.-C. Lai, Phys. Rev. E 70, 035101(R) (2004).

    Google Scholar 

  151. A.E. Motter, Phys. Rev. Lett. 93, 098701 (2004).

    Google Scholar 

  152. D.-H. Kim and A.E. Motter, New J. Phys. 10, 053022 (2008).

    Google Scholar 

  153. P. Holme, B.J. Kim, C.N. Yoon, and S.K. Han, Phys. Rev. E 65, 056109 (2002).

    Google Scholar 

  154. D.-H. Kim and A.E. Motter, J. Phys. A 41, 224019 (2008).

    MathSciNet  Google Scholar 

  155. A. Asztalos, S. Sreenivasan, G. Korniss, and B.K. Szymanski, “Distributed flow optimization and cascading effects in weighted complex networks” (to be submitted, 2011).

    Google Scholar 

  156. X. Ling, M.-B. Hu, W.-B. Du, R. Jiang, Y.H. Wu, ans Q.S. Wu, Phys. Lett. A 374, 4825 (2010).

    Google Scholar 

  157. H.P. Thadakamalla, R. Albert, and S.R.T. Kumara, “Search in spatial scale-free networks”, New J. Phys. 9 190 (2007).

    Google Scholar 

  158. M. Ángeles Serrano, D. Krioukov, and M. Boguña, “Self-Similarity of Complex Networks and Hidden Metric Spaces”, Phys. Rev. Lett. 100, 078701 (2008)

    Google Scholar 

  159. C.W. Gardiner, Handbook of Stochastic Methods 2nd ed. (Springer-Verlag, New York, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Korniss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Korniss, G., Huang, R., Sreenivasan, S., Szymanski, B.K. (2012). Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks. In: Thai, M., Pardalos, P. (eds) Handbook of Optimization in Complex Networks. Springer Optimization and Its Applications(), vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0857-4_3

Download citation

Publish with us

Policies and ethics