Skip to main content

Report on the irreducibility of L-functions

  • Chapter
  • First Online:
Number Theory, Analysis and Geometry

Abstract

In this paper, in honor of the memory of Serge Lang, we apply ideas of Chavdarov and work of Larsen to study the \(\mathbb{Q}\)-irreducibility, or lack thereof, of various orthogonal L-functions, especially L-functions of elliptic curves over function fields in one variable over finite fields. We also discuss two other approaches to these questions, based on work of Matthews, Vaserstein, and Weisfeller, and on work of Zalesskii-Serezkin.

Mathematics Subject Classification (2010): 11M38, 11M50, 14D10, 14D05

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reason we expect this Weyl group is the fact [Weyl, (9.15) on p. 226] that in the compact orthogonal group \(O(2n + 2, \mathbb{R})\), the space of conjugacy classes of sign (here sign = determinant) − 1 is, with its “Hermann Weyl measure” of total mass one, isomorphic to the space of conjugacy classes in the compact symplectic group USp(2n), with its “Hermann Weyl measure” of total mass one.

  2. 2.

    Unlike the Larsen result or the Zalesskii–Serezkin result to be discussed below, this result [MVW] depends upon the classification of finite simple groups.

  3. 3.

    A third approach would be to appeal to the results of Hall [Ha].

References

  1. Artin, E., Geometric Algebra, Interscience Publishers, 1957. Reprinted in Wiley Classics Library, John Wiley, 1988.

    Google Scholar 

  2. Atiyah, M. F.; Bott, R.; Shapiro, A., Clifford modules. Topology 3 1964 suppl. 1, 3–38.

    Google Scholar 

  3. Bourbaki, N. Eléments de mathématique. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre 9: Formes sesquilinéaires et formes quadratiques. Actualités Sci. Ind. no. 1272 Hermann, 1959.

    Google Scholar 

  4. Chavdarov, N., The generic irreducibility of the numerator of the zeta function in a family of curves with large monodromy. Duke Math. J. 87 (1997), no. 1, 151–180.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chevalley, C., The algebraic theory of spinors. Columbia University Press, New York, 1954. Reprinted in The Algebraic Theory of Spinors and Clifford Algebras. Collected Works. Vol. 2. Edited and with a Foreword by Pierre Cartier and Catherine Chevalley. With a postface by J.-P. Bourguignon. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  6. de Jong, A. Johan, Katz, Nicholas M., Monodromy and the Tate conjecture: Picard numbers and Mordell-Weil ranks in families. Israel J. Math. 120 (2000), part A, 47–79.

    Google Scholar 

  7. Deligne, P., La conjecture de Weil. Publ. Math. IHES 43 (1974), 273–307.

    MathSciNet  Google Scholar 

  8. Deligne, P., La conjecture de Weil II. Publ. Math. IHES 52 (1981), 313–428.

    Google Scholar 

  9. Dieudonné, J. Sur les groupes classiques. Troisième édition revue et corrigée. Publications de l’Institut de Mathématique de l’Université de Strasbourg, VI. Actualités Scientifiques et Industrielles, No. 1040. Hermann, Paris, 1959.

    Google Scholar 

  10. Dwork, B., On the rationality of the zeta function of an algebraic variety. Amer. J. Math. 82 (1960), 631-648.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gabber, O., Sur la torsion dans la cohomologie l-adique d’une variété. C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 3, 179–182.

    MathSciNet  MATH  Google Scholar 

  12. Grothendieck, A., Formule de Lefschetz et rationalité des fonctions L. Séminaire Bourbaki, Vol. 9, Exp. No. 279, 41-55, Soc. Math. France, 1995.

    Google Scholar 

  13. Hall, C., Big symplectic or orthogonal monodromy modulo , Duke Math. J. 141 (2008), no. 1, 179–203.

    Article  MathSciNet  MATH  Google Scholar 

  14. Jouve, F., Méthodes de crible et sommes d’exponentielles, thesis, Univ. Bordeaux I, Déc., 2008.

    Google Scholar 

  15. Karoubi, M., Algèbres de Clifford et K-théorie. Ann. Sci. Ecole Norm. Sup. (4) 1 1968 161–270.

    Google Scholar 

  16. Katz, N., Exponential sums and differential equations, Annals of Math. Study 124, Princeton Univ. Press, 1990.

    Google Scholar 

  17. Katz, N., Gauss sums, Kloosterman sums, and monodromy groups, Annals of Math. Study 116, Princeton Univ. Press, 1988.

    Google Scholar 

  18. Katz, N., Larsen’s alternative, moments, and the monodromy of Lefschetz pencils. Contributions to automorphic forms, geometry, and number theory, 521–560, Johns Hopkins Univ. Press, Baltimore, MD, 2004.

    Google Scholar 

  19. Katz, N., Moments, monodromy, and perversity: a Diophantine perspective. Annals of Math. Study 159. Princeton University Press, 2005.

    Google Scholar 

  20. Katz, N.; Pandharipande, R., Inequalities related to Lefschetz pencils and integrals of Chern classes. Geometric aspects of Dwork theory. Vol. I, II, 805–818, Walter de Gruyter GmbH & Co. KG, Berlin, 2004.

    Google Scholar 

  21. Katz, N.; Sarnak, P., Random matrices, Frobenius eigenvalues, and monodromy. American Mathematical Society Colloquium Publications, 45. American Mathematical Society, Providence, RI, 1999.

    Google Scholar 

  22. Katz, N., Twisted L-functions and monodromy. Annals of Math. Study 150. Princeton University Press, 2002.

    Google Scholar 

  23. Kowalski, E., The large sieve, monodromy and zeta functions of curves, Crelle 601 (2006), 29–69.

    MATH  Google Scholar 

  24. Kowalski, E., On the rank of quadratic twists of elliptic curves over function fields, Int’l. J. of Number Theory 2 (2006), 267–288.

    Article  MATH  Google Scholar 

  25. Larsen, M. Maximality of Galois actions for compatible systems. Duke Math. J. 80 (1995), no. 3, 601–630.

    Article  MathSciNet  MATH  Google Scholar 

  26. Matthews, C. R.; Vaserstein, L. N.; Weisfeiler, B. Congruence properties of Zariski-dense subgroups. I. Proc. London Math. Soc. (3) 48 (1984), no. 3, 514–532.

    Google Scholar 

  27. Poonen, B., Bertini theorems over finite fields. Ann. of Math. (2) 160 (2004), no. 3, 1099-1127.

    Google Scholar 

  28. Ribet, K., Galois action on division points of Abelian varieties with real multiplications. Amer. J. Math. 98 (1976), no. 3, 751–804.

    Article  MathSciNet  MATH  Google Scholar 

  29. Saito, T., The sign of the functional equation of the L-function of an orthogonal motive. Invent. Math. 120 (1995), no. 1, 119–142.

    Article  MathSciNet  MATH  Google Scholar 

  30. Revêtements étales et groupe fondamental. Séminaire de Géométrie Algébrique du Bois Marie 1960-1961 (SGA 1). Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, 1971.

    Google Scholar 

  31. Groupes de monodromie en géométrie algébrique. II. Séminaire de Géométrie Algébrique du Bois-Marie 1967-1969 (SGA 7 II). Dirigé par P. Deligne et N. Katz. Lecture Notes in Mathematics, Vol. 340. Springer-Verlag, 1973.

    Google Scholar 

  32. Weyl, H., Classical Groups, Princeton University Press, 1946.

    Google Scholar 

  33. Zalesskiĭ, A. E.; Serežkin, V. N. Finite linear groups generated by reflections. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 6, 1279-1307, 38, translated in Math. USSR. Izvestijia 17 (1981), No. 3, 477–503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas M. Katz .

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Serge Lang

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Katz, N.M. (2012). Report on the irreducibility of L-functions. In: Goldfeld, D., Jorgenson, J., Jones, P., Ramakrishnan, D., Ribet, K., Tate, J. (eds) Number Theory, Analysis and Geometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1260-1_15

Download citation

Publish with us

Policies and ethics