Skip to main content

What is the Origin of the Lightest Elements?

  • Chapter
  • First Online:
Stardust, Supernovae and the Molecules of Life

Part of the book series: Astronomers' Universe ((ASTRONOM))

  • 1203 Accesses

Abstract

Although the birth event of our Universe occurred 13.7 billion years ago, it left enough signatures about its details that scientists are quite confident in our understanding of the basic features of that event. The first hints of the Big Bang came from astronomers, as discussed in this chapter. More recently, two incredible experiments, the Supernova Cosmology Project and the Wilkinson Microwave Anisotropy Probe, have determined the parameters that govern our Universe in exquisite detail. One longstanding paradox is also discussed, and shown to be solved by the Big Bang model. Finally, we explore the nuclear reactions that made a few light nuclei in the few minutes that followed the Big Bang. The abundances for these nuclei obtained by observational astronomers are compared to the calculations of the nucleosynthesis that occurred just after the Big Bang.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Hamuy, M.M. Phillips, N.B. Suntzeff, R.N. Schommer, J. Mazo, and R. Aviles, The Morphology of Type IA Supernovae Light Curves, Astron. J. 112, 2398 (1996)

    Article  ADS  Google Scholar 

  2. R.N. Boyd, An Introduction to Nuclear Astrophysics, Univ. Chicago Press, Chicago, 2008

    Book  Google Scholar 

  3. S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, S. Fabbro, A. Goobar, D.E. Groom, I.M. Hook, A.G. Kim, M.Y. Kim, J.C. Lee, N.J. Nunes, R. Pain, C.R. Pennypacker, R. Quimby, C. Lidman, R.S. Ellis, M. Irwin, R.G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B.J. Boyle, A.V. Filippenko, T. Matheson, A.S. Fruchter, N. Panagia, H.J.M. Newberg, W.J. Couch, and The Supernova Cosmology Project, Measurements of the Cosmological Parameters Ω and Λ from 42 High-Redshift Supernovae, Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  4. G.F. Smoot, C.L. Bennett, A. Kogut, E.L. Wright, J. Aymon, N.W. Boggess, E.S. Cheng, G. de Amici, S. Gulkis, M.G. Hauser, G. Hinshaw, P.D. Jackson, M. Janssen, E. Kaita, T. Kelsall, P. Keegstra, C. Lineweaver, K. Loewenstgein, P. Lubin, J. Mather, S.S. Meyer, S.H. Moseley, T. Murdock, L. Rokke, R.F. Silverberg, L. Tenorio, R. Weiss, and D.T. Wilkinson, Structure in the COBE Differential Microwave Radiometer First-Year Maps, Astrophys. J. 396, L1 (1992)

    Article  ADS  Google Scholar 

  5. C.L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S.S. Meyer, L. Page, D.N. Spergel, G.S. Tucker, E. Wollack, E.L. Wright, C. Barnes, M.R. Greason, R.S. Hill, E. Komatsu, M.R. Nolta, N. Odegard, H.V. Peiris, L. Verde, and J.L. Weiland, First-Year WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) Observations: Preliminary Maps and Basic Results, Astrophys. J. Suppl. Series 148, 1 (2003)

    Article  ADS  Google Scholar 

  6. N. Jarosik, C.L. Bennett, J. Dunkley, B. Gold, M.R. Greason, M. Halpern, R.S. Hill, G. Hinshaw, A. Kogut, E. Komatsu, D. ­Larson, M. Limon, S.S. Meyer, M.R. Nolta, N. Odegard, L. Page, K.M. Smith, D.N. Spergel, G.S. Tucker, J.L. Weiland, E. Wollack, and E.L. Wright, Seven-Year WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results, Astrophys. J. Suppl. Series 192, 14 (2011)

    Article  ADS  Google Scholar 

  7. P.S. Wesson, Olbers’s Paradox and the Spectral Intensity of the Extragalactic Background Light, Astrophys. J. 367, 399 (1991)

    Article  ADS  Google Scholar 

  8. J.N. Bahcall, A.M. Serenelli, and S. Basu, New Solar Opacities, Abundances, Helioseismology, and Neutrino Fluxes. Astrophys. J. 621, L85 (2005)

    Article  ADS  Google Scholar 

  9. B.D. Fields and K.A. Olive, On the Evolution of Helium in Blue Compact Galaxies, Astrophys. J. 506, 177 (1998)

    Article  ADS  Google Scholar 

  10. D. Kirkman, D. Tytler, S. Burles, D. Lubin, J.M. O’Meara, QSO 0130-402: A Third QSO Showing a Low Deuterium to Hydrogen Abundance Ratio. Astrophys. J. 529, 655 (2000)

    Article  ADS  Google Scholar 

  11. J. Linsky, Atomic Deuterium/Hydrogen in the Galaxy. Space Sci. Rev. 106, 49 (2003)

    Article  ADS  Google Scholar 

  12. S.G. Ryan, T.C. Beers, K.A. Olive, B.D. Fields, and J.E. Norris, Primordial Lithium and Big Bang Nucleosynthesis. Astrophys. J. Lett. 530, 57 (2000)

    Article  ADS  Google Scholar 

  13. M.H. Pinsonneault, G. Steigman, T.P. Walker, and V.K. Narayanan, Stellar Mixing and the Primordial Lithium Abundance. Astrophys. J. 574, 398 (2002)

    Article  ADS  Google Scholar 

  14. B.D. Fields and S. Sarker, Big Bang Nucleosynthesis. Phys. Lett. B 592, 1 (2004)

    Article  ADS  Google Scholar 

  15. R.N. Boyd, C. Brune, G.M. Fuller, and C.J. Smith, New Nuclear Physics for Big Bang Nucleosynthesis, Phys. Rev. D 82, 105005 (2010).

    Article  ADS  Google Scholar 

  16. N. Chakraborty, B.D. Fields, and K.A. Olive, Resonant Destruction as a Possible Solution to the Cosmological Lithium Problem, arXiv: 1011.0722

    Google Scholar 

  17. R.H. Cyburt and M. Pospelov, Resonant Enhancement of Nuclear Reactions as a Possible Solution to the Cosmological Lithium Problem, arXiv:0906.4373 (2009)

    Google Scholar 

  18. P.D. O’Malley, D.W. Bardayan, K.Y. Chae, S.H. Ahn, W.A. Peters, M.E. Howard, K.L. Jones, R.L. Kozub, M. Matos, S.T. Pittman, J.A. Cizewski, and M.S. Smith, Phys. Rev. C 84, 042801(R) (2011)

    Google Scholar 

  19. C. Bird, K. Koopmans, and M. Pospelov, Primordial Lithium Abundance in Catalyzed Big Bang Nucleosynthesis, Phys. Rev. D 78, 083010 (2008)

    Article  ADS  Google Scholar 

  20. M. Kusakabe, T. Kajino, R.N. Boyd, T. Yoshida, and G.J. Mathews, Simultaneous Solution to the 6LI and 7Li Big Bang Nucleosynthesis Problems from a Long-Lived Negatively Charged Leptonic Particle, Phys. Rev. D 76, 121301(R) (2007)

    Article  ADS  Google Scholar 

  21. M. Pospelov and J. Pradler, Big Bang Nucleosynthesis as a Probe of New Physics, Ann. Rev., Nucl. Part. Sci. 60, 539 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard N. Boyd .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boyd, R.N. (2012). What is the Origin of the Lightest Elements?. In: Stardust, Supernovae and the Molecules of Life. Astronomers' Universe. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1332-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1332-5_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1331-8

  • Online ISBN: 978-1-4614-1332-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics