Skip to main content

Multijunction Approaches to Photoelectrochemical Water Splitting

  • Chapter
  • First Online:
Photoelectrochemical Hydrogen Production

Part of the book series: Electronic Materials: Science & Technology ((EMST,volume 102))

Abstract

The key to successful deployment of photoelectrochemical (PEC) water-splitting for commercial renewable hydrogen production will be in the identification and development of innovative semiconductor materials systems and devices, likely involving multijunction configurations. Multijunction approaches offer some of the best hope for achieving practical PEC hydrogen production in the near term, but complex materials and interface issues still need to be addressed by the scientific community. This chapter explores the challenges and benefits of large-scale solar water splitting for renewable hydrogen production, with specific focus on the multijunction PEC production pathways. The technical motivation and approach in the R&D of multijunction PEC devices and systems are considered, and examples of progress in laboratory scale prototypes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khaselev, O., Bansal, A., Turner, J.A.: High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrogen Energy 26, 127–132 (2001)

    Google Scholar 

  2. Khaselev, O., Turner, J.A.: A monolithic photovoltaic photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998)

    Google Scholar 

  3. Andreev, V.M.: GaAs and high-efficiency space cells. In: Markvart, T., Castañer, L. (eds.) Practical Handbook of Photovoltaics: Fundamentals and Applications. Elsevier, New York (2003)

    Google Scholar 

  4. Deutsch, T.G., Koval, C.A., Turner, J.A.: III − V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN. J. Phys. Chem. B 110, 25297–25307 (2006)

    Google Scholar 

  5. Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001)

    Google Scholar 

  6. Marsen, B., Miller, E.L., Paluselli, D., Rocheleau, R.E.: Progress in sputtered tungsten trioxide for photoelectrode applications. Int. J. Hydrogen Energy 32, 3110–3115 (2007)

    Google Scholar 

  7. Gaillard, N., Chang, Y., Kaneshiro, J., Deangelis, A., Miller, E.L.: Status of research on tungsten oxide-based photoelectrochemical devices at the University of Hawai’i. Proc. SPIE 7770, 77700V–77701V (2010)

    Google Scholar 

  8. Rocheleau, R.E., Miller, E.L., Misra, A.: High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy Fuels 12, 3–10 (1998)

    Google Scholar 

  9. Miller, E.L., Gaillard, N., Kaneshiro, J., DeAngelis, A., Garland, R.: Progress in new semiconductor materials classes for solar photoelectrolysis. Int. J. Energy Res 34, 1215–1222 (2010)

    Google Scholar 

  10. Kuang, C.: Fast Company. http://www.fastcompany.com/blog/cliff-kuang/design-innovation/start-aims-clean-energys-holy-grail-freeing-hyrodgen-water, 16 Apr 2009. Accessed 29 Mar 2011

  11. Li, Y., Zhang, J.Z.: Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev. 4, 517–528 (2010)

    MATH  Google Scholar 

  12. Bush, G.W.: State of the Union. Presented in Washington, DC, USA, 28 January 2003

    Google Scholar 

  13. Rifkin, J.: The Hydrogen Economy. Tarcher (2003)

    Google Scholar 

  14. Romm, J.J.: The Hype About Hydrogen. Island, New York (2004)

    Google Scholar 

  15. Bromaghim, G., Gibeault, K., Serfass, J., Serfass, P., Wagner, E.: Hydrogen and Fuel Cells: The U.S. Market Report. National Hydrogen Association, 22 March 2010

    Google Scholar 

  16. Collodi, G., Bressan, L., Ruggeri, F., Uncuoglu, D.: Hydrogen Production for Upgrading Projects in Refineries. Foster Wheeler Italiana S.p.A, Via Caboto 1, 20094 Corsico – Milan – Italy. http://www.fwc.com/publications/tech_papers/files/Hydrogen%20Production%20for%20Upgrading%20in%20Refineries.pdf (2009). Accessed 29 Mar 2011

  17. U.S. Department of Energy: Natural Gas Reforming. http://www1.eere.energy.gov/hydrogenandfuelcells/production/natural_gas.html. Accessed 29 Mar 2011

  18. Ball, M., Wietschel, M.: The Hydrogen Economy: Opportunities and Challenges. Cambridge Press, New York (2009)

    Google Scholar 

  19. Yürüm, Y.: Hydrogen energy system: production and utilization of hydrogen and future aspects. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  20. Turner, J.A.: A realizable renewable energy future. Science 285, 687–689 (1999)

    Google Scholar 

  21. Energy Information Administration: World Proved Reserves of Oil and Natural Gas, Most Recent Estimates. 3 March 2009. http://www.eia.doe.gov/emeu/international/reserves.html. Accessed 29 Mar 2011

  22. Energy Information Administration: World Petroleum Consumption, 1960–2008. http://www.eia.doe.gov/aer/txt/ptb1110.html. Accessed 29 Mar 2011

  23. Energy Information Administration: International Energy Outlook 2007: Petroleum and Other Liquid Fuels. http://www.eia.doe.gov/oiaf/archive/ieo07/pdf/oil.pdf. Accessed 29 Mar 2011

  24. Safina, C.: Testimony to the House Subcommittee on Energy and Environment. 21 May 2010

    Google Scholar 

  25. U. S. Department of Energy, Office of Science: Basic Research Needs for Solar Energy Utilization. Washington (2005)

    Google Scholar 

  26. Green, M.A.: Solar cells: Operating Principles, Technology, and System Applications. Prentice-Hall, Inc, Kensington, NSW (1982)

    Google Scholar 

  27. U. S. Department of Energy, Energy Information Administration: International Energy Outlook 2008 (DOE/EIA-0484). Washington (2008)

    Google Scholar 

  28. Greentech Media and the Prometheus Institute: PV Technology, Production and Cost, 2009 Forecast: The Anatomy of a Shakeout. Cambridge (2008)

    Google Scholar 

  29. Solarbuzz: Marketbuzz 2009: Annual World Solar PV Market Report. San Francisco (2009)

    Google Scholar 

  30. Bauman, R.P.: Modern Thermodynamics with Statistical Mechanics. Macmillan Publishing Company, New York (2003)

    Google Scholar 

  31. Akkerman, I., Janssen, M., Rocha, J., Wijffels, R.H.: Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int. J. Hydrogen Energy 27, 1195–1208 (2002)

    Google Scholar 

  32. Zaborsky, O.R.: Biohydrogen. Plenum, New York (1998)

    Google Scholar 

  33. Funk, J.E., Reinstrom, R.M.: Energy requirements in production of hydrogen from water. Ind. Eng. Chem. Process Des. Dev. 5, 336–342 (1966)

    Google Scholar 

  34. Minggu, L.J., Daud, W.R.W., Kassim, M.B.: An overview of photocells and photoreactors for photoelectrochemical water splitting. Int. J. Hydrogen Energy 35, 5233–5244 (2010)

    Google Scholar 

  35. James, B.D., Baum, G.N., Perez, J., Baum, K.N.: Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production. Directed Technologies, Inc. https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/pec_technoeconomic_analysis.pdf (2009). Accessed 11 Mar 2011

  36. Ruth, M., Laffen, M., and Timbario, T.A.: NREL technical report (NREL/BK-6A1-46676). Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios. September 2009

    Google Scholar 

  37. NREL Technical Report (NREL/TP-6A1-46612): Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis. September 2009

    Google Scholar 

  38. DOE EERE Fuel Cells Technologies Program: Multi-Year Research, Development and Demonstration Plan: Planned Program Activities for 2005–2015. http://www1.eereenergy.gov/hydrogenandfuelcells/mypp/. April 2009

  39. Kelly, N.A., Gibson, T.L.: Solar energy concentrating reactors for hydrogen production by photoelectrochemical water splitting. Int. J. Hydrogen Energy 33, 6420–6643 (2008)

    Google Scholar 

  40. Mavroides, J.G., Kafalas, J.A., Kolesar, D.F.: Photoelectrolysis of water in cells with SrTiO3 anodes. Appl. Phys. Lett. 28, 241–243 (1976)

    Google Scholar 

  41. Bard, A.J., Faulknerk, L.R.: Electrochemical Methods: Fundamentals and Applications. Wiley, New York (2000)

    Google Scholar 

  42. Bockris, J.O.M., Reddy, A.K.N., Gamboa-Aldeco, M.E.: Modern Electrochemistry: Fundamentals of Electrodics, vol. 2a. Springer, New York (2001)

    Google Scholar 

  43. Memming, R.: Semiconductor Electrochemistry. Wiley-VCH, Weinheim (2001)

    Google Scholar 

  44. Lipkowski, J., Ross, P.N.: Electrochemistry of Novel Materials. VCH Publishers, New York (1994)

    Google Scholar 

  45. Gellings, P.J., Bouwmeester, H.J.M.: The CRC Handbook of Solid State Electrochemistry. CRC, Boca Raton (1997)

    Google Scholar 

  46. Nozik, A.J., Memming, R.: Physical chemistry of the semiconductor–liquid interface. J. Phys. Chem. 100, 13061–13078 (1996)

    Google Scholar 

  47. Gerischer, H.: Solar photoelectrolysis with semiconductor electrodes. In: Seraphin, B.O. (ed.) Solar Energy Conversion, Solid-State Physics Aspects, pp. 115–172. Springer-Verlag, New York (1979)

    Google Scholar 

  48. Gerischer, H.: Physical Chemistry: An Advanced Treatise, vol. 9A. Academic, New York (1970)

    Google Scholar 

  49. Gerischer, H.: The impact of semiconductors on the concept of electrochemistry. Electrochim. Acta 35, 1677–1690 (1990)

    Google Scholar 

  50. Miller, E.L.: Solar hydrogen production by photoelectrochemical water splitting: the promise and challenge. In: Vayssieres, L. (ed.) On Solar Hydrogen and Nanotechnology, pp. 3–35. Wiley, Asia (2009)

    Google Scholar 

  51. Lee, K., Nam, W.S., Han, G.Y.: Photocatalytic water-splitting in alkaline solution using redox mediator. 1: Parameter study. Int. J. Hydrogen Energy 29, 1343–1347 (2004)

    Google Scholar 

  52. Marcus, R.J.: Chemical conversion of solar energy. Science 123, 399–405 (1965)

    Google Scholar 

  53. Bockris, J.O.M.: Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen. J. Chem. Phys. 24, 817–827 (1956)

    Google Scholar 

  54. Kanan, M.W., Nocera, D.G.: In Situ Formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008)

    Google Scholar 

  55. Dutta, S.: Technology assessment of advanced electrolytic hydrogen production. Int. J. Hydrogen Energy 15, 379–386 (1990)

    Google Scholar 

  56. LeRoy, R.L.: Industrial water electrolysis: present and future. Int. J. Hydrogen Energy 8, 401–417 (1983)

    Google Scholar 

  57. Chen, Z., Jaramillo, T.F., Deutsch, T.G., Kleiman-Shwarsctein, A., Forman, A.J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E.W., Domen, K., Miller, E.L., Turner, J.A., Dinh, H.N.: Accelerating materials development for photoelectrochemical (PEC) hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010)

    Google Scholar 

  58. Parkinson, B.: On the efficiency and stability of photoelectrochemical devices. Acc. Chem. Res. 17, 431–437 (1984)

    Google Scholar 

  59. Dohrmann, J.K., Schaaf, N.S.: Energy conversion by photoelectrolysis of water: determination of efficiency by in situ photocalorimetry. J. Phys. Chem. 96, 4558–4563 (1992)

    Google Scholar 

  60. Heller, A.: Electrochemical solar cells. Solar Energy 29, 153–162 (1982)

    Google Scholar 

  61. Khan, S.U.M., Al-shahry, M., Ingler Jr., W.B.: Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243–2245 (2002)

    Google Scholar 

  62. Emery, K.: Measurements and characterization of solar cell modules. In: Luque, A., Hegedus, S. (eds.) Handbook of Photovoltaic Science and Engineering, pp. 701–752. Wiley, New York (2003)

    Google Scholar 

  63. NIST Chemistry WebBook: NIST Standard Reference Database Number 69 http://webbook.nist.gov/chemistry/. Accessed 29 Mar 2011

  64. Luther, J.: Motivation for photovoltaic application and development. In: Luque, A., Hegedus, S. (eds.) Handbook of Photovoltaic Science and Engineering, pp. 45–60. Wiley, New York (2003)

    Google Scholar 

  65. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Tage, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)

    Google Scholar 

  66. Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (2006)

    Google Scholar 

  67. Neamen, D.A.: Semiconductor Physics and Devices: Basic Principles. McGraw-Hill, New York (2002)

    Google Scholar 

  68. Balandin, A.A., Wang, K.L.: Handbook of Semiconductor Nanostructures and Nanodevices (5-Volume Set). American Scientific Publishers, Stevenson Ranch (2006)

    Google Scholar 

  69. Muller, R.S., Kamins, T.I.: Device Electronics for Integrated Circuits. Wiley, New York (2002)

    Google Scholar 

  70. Yu, P.Y., Cardona, M.: Fundamentals of Semiconductors: Physics and Materials Properties. Springer, New York (2004)

    Google Scholar 

  71. Mussini, T., Longhi, P.: Chlorine. In: Bard, A.J., Parsons, R., Jordan, J. (eds.) Standard Potentials in Aqueous Solution, pp. 70–77. IUPAC, New York (1985)

    Google Scholar 

  72. Tan, M.X., Kenyon, C.N., Krulger, O., Lewis, N.S.: Behavior of Si photoelectrodes under high level injection conditions. 1. Steady-state current–voltage properties and quasi-fermi level positions under illumination. J. Phys. Chem. B 101, 2830–2839 (1997)

    Google Scholar 

  73. Miller, E.L., Paluselli, D., Marsen, B., Rocheleau, R.: Optimization of hybrid photoelectrodes for solar water splitting. Electrochem. Solid-State Lett. 8, A247–A249 (2005)

    Google Scholar 

  74. Hanna, M.C., Nozik, A.J.: Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. App. Phys. 100, 074510 (2006)

    Google Scholar 

  75. Ross, R.T., Hsiao, T.L.: Limits on the yield of photochemical solar energy conversion. J. Appl. Phys. 48, 4783–4785 (1977)

    Google Scholar 

  76. Bolton, J.R., Haught, A.F., Ross, R.T.: Photochemical energy storage: an analysis of limits. In: Connolly, J.S. (ed.) Photochemical Conversion and Storage of Solar Energy, pp. 297–330. Academic, New York (1981)

    Google Scholar 

  77. Bolton, J.R., Strickler, S.J., Connolly, J.S.: Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495–500 (1985)

    Google Scholar 

  78. Weber, M.F., Dignam, M.J.: Splitting water with semiconducting photoelectrodes – efficiency considerations. Int. J. Hydrogen Energy 11, 225 (1986)

    Google Scholar 

  79. Archer, M.D., Bolton, J.R.: Requirements for ideal performance of photochemical and photovoltaic solar energy converters. J. Phys. Chem. 94, 8028–8036 (1990)

    Google Scholar 

  80. Bolton, J.R.: Solar photoproduction of hydrogen: a review. Solar Energy 57, 37 (1996)

    Google Scholar 

  81. Licht, S.: Multiple band gap semiconductor/electrolyte solar energy conversion. Phys. Chem. B 105, 6281–6294 (2001)

    Google Scholar 

  82. Rocheleau, R.E., Miller, E.L.: Photoelectrochemical production of hydrogen: engineering loss analysis. Int. J. Hydrogen Energy 22, 771–782 (1997)

    Google Scholar 

  83. Ellis, A.B., Kaiser, S.W., Wrighton, M.S.: Semiconducting potassium tantalate electrodes. J. Phys. Chem. 80, 1325–1328 (1976)

    Google Scholar 

  84. Green, M.A.: Third Generation Photovoltaics: Advanced Solar Energy Conversion. Springer-Verlag, Heidelberg (2003)

    Google Scholar 

  85. Yamaguchi, M.: Super-high-efficiency multi-junction solar cells. Prog. Photovolt. Res. Appl. 13, 125 (2005)

    Google Scholar 

  86. King, R.R. et al: Advances in High-Efficiency III-V Multijunction Solar Cells. Adv. Opto-Electr. Article ID 29523, 8 pages (2007)

    Google Scholar 

  87. Press Release: Spectrolab solar cell breaks 40% efficiency barrier. 7 December 2006. http://www.insidegreentech.com/node/454. Accessed 29 Mar 2011

  88. Guter, W., et al.: Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl. Phys. Lett. 94, 223504 (2009)

    Google Scholar 

  89. Swinehart, D.F.: The Beer–Lambert law. J. Chem. Educ. 39, 333 (1962)

    Google Scholar 

  90. López, N., Reichertz, L.A., Yu, K.M., Campman, K., Walukiewicz, W.: Engineering the electronic band structure for multiband solar cells. Phys. Rev. Lett. 106, 028701 (2011)

    Google Scholar 

  91. Baruch, P., De Vos, A., Landsberg, P.T., Parrott, J.E.: On some thermodynamic aspects of photovoltaic solar energy conversion. Solar Energy Mater. Solar Cells 36, 201–222 (1995)

    Google Scholar 

  92. Fonash, S.: Solar Cell Device Physics. Academic, New York (1982)

    Google Scholar 

  93. Smestad, G.P.: Optoelectronics of Solar Cells. SPIE, Bellingham (2002)

    Google Scholar 

  94. Yang, J., Yan, B., Guha, S.: Amorphous and nanocrystalline silicon-based multi-junction solar cells. Thin Solid Films 487, 162–169 (2005)

    Google Scholar 

  95. Nishiwaki, S., Siebentritt, S., Walk, P., Lux-Steiner, M.C.: A stacked chalcopyrite thin-film tandem solar cell with 1.2 V open-circuit voltage. Prog. Photovolt. Res. Appl. 11, 243–248 (2003)

    Google Scholar 

  96. Arai, T., Konishi, Y., Iwasaki, Y., Sugihara, H., Sayama, K.: High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors. J. Comb. Chem. 9, 574–581 (2007)

    Google Scholar 

  97. Kusama, H., Wang, N., Miseki, Y., Sayama, K.: Combinatorial search for iron/titanium-based ternary oxides with a visible-light response. J. Comb. Chem. 12, 356–362 (2010)

    Google Scholar 

  98. Jianghua, H., Parkinson, B.A.: A combinatorial investigation of the effects of the incorporation of Ti, Si, and Al on the performance of α-Fe2O3 photoanodes. J. Comb. Chem. 13(4), 399–404 (2011)

    Google Scholar 

  99. Woodhouse, M., Parkinson, B.A.: Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev. 38, 197–210 (2009)

    Google Scholar 

  100. Burnett, B.: The Basic Physics and Design of III-V Multijunction Solar Cells. NREL, Golden (2002)

    Google Scholar 

  101. Yamaguchi, M.: III–V compound multi-junction solar cells: present and future. Solar Energy Mater. Solar Cells 75, 261–269 (2003)

    Google Scholar 

  102. Wolf, M.: Limitations and possibilities for improvement of photovoltaic solar energy converters. Proc. Inst. Radio Eng. 48, 1246–1263 (1960)

    Google Scholar 

  103. Poortmans, J., Arkhipov, V.: Thin film solar cells: fabrication, characterization and applications. Wiley, Hoboken, NJ (2006)

    Google Scholar 

  104. The Basic Physics and Design of III-V Multijunction Solar Cells http://photochemistry.epfl.ch/EDEY/NREL.pdf. Accessed 6 Oct 2011

  105. Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q.X., Santori, E.A., Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010)

    Google Scholar 

  106. Gibson, T.L., Kelly, N.A.: Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices. Int. J. Hydrogen Energy 35, 900–911 (2010)

    Google Scholar 

  107. Ingler, W.B., Khan, S.U.M.: A self-driven p/n-Fe2O3 tandem photoelectrochemical cell for water splitting. Electrochem. Solid State Lett. 9, G144–G146 (2006)

    Google Scholar 

  108. Miller, E.L., Rocheleau, R.E., Deng, X.M.: Design considerations for a hybrid amorphous silicon/photoelectrochemical multijunction cell for hydrogen production. Int. J. Hydrogen Energy 28, 615–623 (2003)

    Google Scholar 

  109. Zhu, F., Hu, J., Kunrath, A., Matulionis, I., Marsen, B., Cole, B., Miller, E.L., Madan, A.: a-SiC:H films used as photoelectrodes in a hybrid, thin-film silicon photoelectrochemical (PEC) Cell for progress toward 10% solar-to hydrogen efficiency. Sol. Hydrogen Nanotechnol. Proc. SPIE 6650, 66500S (2007)

    Google Scholar 

  110. Santato, C., Ulmann, M., Augustynski, J.: Photoelectrochemical properties of nanostructured tungsten trioxide films. J. Phys. Chem. B 105, 936–940 (2001)

    Google Scholar 

  111. Arakawa, H., Shiraishi, C., Tatemoto, M., Kishida, H., Usui, D., Suma, A., Takamisawa, A., Yamaguchi, T.: Solar hydrogen production by tandem cell system composed of metal oxide semiconductor film photoelectrode and dye-sensitized solar cell. Proc. SPIE 6650, 665003 (2007). doi:10.1117/12.773366

    Google Scholar 

  112. Hu, J., Zhu, F., Matulionis, I., Kunrath, A., Deutsch, T., Kuritzky, L., Miller, E.L., Madan, A.: Solar-to-hydrogen photovoltaic/photoelectrochemical devices using amorphous silicon carbide as the photoelectrode. 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1–5 September 2008

    Google Scholar 

  113. Matulionis, I., Zhu, F., Hu, J., Gallon, J., Kunrath, A., Miller, E.L., Marsen, B., Madan, A.: Development of a corrosion-resistant amorphous silicon carbide photoelectrode for solar-to-hydrogen photovoltaic/photoelectrochemical devices. SPIE Solar Energy and Hydrogen Conference, San Diego, USA, 10–14 August 2008

    Google Scholar 

  114. Stavrides, A., Kunrath, A., Hu, J., Treglio, R., Feldman, A., Marsen, B., Cole, B., Miller, E.L., Madan, A.: Use of amorphous silicon tandem junction solar cells for hydrogen production in a photoelectrochemical cell. SPIE Optics & Photonics Conference, San Diego, USA, 13–17 August 2006

    Google Scholar 

  115. Higashi, M., Abe, R., Ishikawa, A., Takata, T., Ohtani, B., Domen, K.: Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (λ < 500 nm). Chem. Lett. 37, 138–139 (2008)

    Google Scholar 

  116. Arakawa, H., Zou, Z., Sayama, K., Abe, R.: Direct water splitting by new oxide semiconductor photocatalysts under visible light irradiation. Pure Appl. Chem. 79, 1917–1927 (2007)

    Google Scholar 

  117. Miller, E.L., Marsen, B., Cole, B., Lum, M.: Low-temperature reactively sputtered tungsten oxide films for solar-powered water splitting applications. Electrochem. Solid State Lett. 9, G248–G250 (2006)

    Google Scholar 

  118. Yan, Y., Wei, S.-H.: Doping asymmetry in wide-bandgap semiconductors: origins and solutions. Phys. Stat. Sol. B 245, 641 (2008)

    Google Scholar 

  119. Alexander, B.D., Kulesza, P.J., Rutkowska, I., Solarska, R., Augustynski, J.: Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 2298–2303 (2008)

    Google Scholar 

  120. Cole, B., Marsen, B., Miller, E.L., Yan, Y., To, B., Jones, K., Al-Jassim, M.M.: Evaluation of nitrogen doping of tungsten oxide for photoelectrochemical water splitting. J. Phys. Chem. C 112, 5213–5220 (2008)

    Google Scholar 

  121. Honga, S.J., Juna, H., Borsea, P.H., Lee, J.S.: Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. Int. J. Hydrogen Energy 34, 3234–3242 (2009)

    Google Scholar 

  122. Miller, E.L., Paluselli, D., Marsen, B., Rocheleau, R.E.: Low-temperature reactively sputtered iron oxide for thin film devices. Thin Solid Films 466, 307–313 (2004)

    Google Scholar 

  123. Duret, A., Grätzel, M.: Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B 109, 17184–17191 (2005)

    Google Scholar 

  124. Hu, Y.-S., Kleiman-Shwarsctein, A., Forman Hazen, A.J., Park, J.N., McFarland, E.W.: Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mater. 20, 3803–3805 (2008)

    Google Scholar 

  125. Kleiman-Shwarsctein, A., Hu, Y.-S., Forman, A.J., Stucky, G.D., McFarland, E.W.: Electrodeposition of α-Fe2O3 Doped with Mo or Cr as Photoanodes for Photocatalytic Water Splitting. J. Phys. Chem. C 112, 15900–15907 (2008)

    Google Scholar 

  126. Kay, A., Cesar, I., Grätzel, M.: New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)

    Google Scholar 

  127. Berglund, S.P., Flaherty, D.W., Hahn, N.T., Bard, A.J., Mullins, C.B.: Photoelectrochemical oxidation of water using nanostructured BiVO4 films. J. Phys. Chem. C 115, 3794–3802 (2011)

    Google Scholar 

  128. Liang, Y., Kleijn, S.J., Mooij, L.P.A., Van de Krol, R.: Defect properties and photoelectrochemical performance of BiVO4 photoanodes. 216th ECS Meeting, Abstract #1172 (2009)

    Google Scholar 

  129. Enache, C.S., Lloyd, D., Damen, M.R., Schoonman, J., Van de Krol, R.: Photo-electrochemical properties of thin-film InVO4 photoanodes: the role of deep donor state. J. Phys. Chem. C 113, 19351–19360 (2009)

    Google Scholar 

  130. Chen, X., Liu, L., Yu, P.Y., Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011)

    Google Scholar 

  131. Yae, S., Kobayashi, T., Abe, M., Nasu, N., Fukumuro, N., Ogawa, S., Yoshida, N., Nonomura, S., Nakato, Y., Matsuda, H.: Solar to chemical conversion using metal nanoparticle modified microcrystalline silicon thin film photoelectrode. Solar Energy Mater. Solar Cells 91, 224–229 (2007)

    Google Scholar 

  132. Sebastian, P.J., Mathews, N.R., Mathew, X., Pattabi, M., Turner, J.: Photoelectrochemical characterization of SiC. Int J. Hydrogen Energy 26, 123–125 (2001)

    Google Scholar 

  133. Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B., Noufi, R.: 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl. 16, 235 (2008)

    Google Scholar 

  134. Bär, M., Weinhardt, L., Pookpanratana, S., Heske, C., Nishiwaki, S., Shafarman, W., Fuchs, O., Blum, M., Yang, W., Denlinger, J.D.: Depth-dependent band gap energies in Cu(In, Ga)(S, Se)2 thin films. Appl. Phys. Lett. 93, 244103 (2008)

    Google Scholar 

  135. Bär, M., Bohne, W., Röhrich, J., Strub, E., Lindner, S., Lux-Steiner, M.C., Fischer, Ch-H: Determination of the band gap depth profile of the penternary Cu(In(1-X)GaX)(SYSe(1-Y))2 chalcopyrite from its composition gradient. J. Appl. Phys. 96, 3857 (2004)

    Google Scholar 

  136. Bär, M., Weinhardt, L., Heske, C., Nishiwaki, S., Shafarman, W.: Chemical structures of the Cu(In, Ga)Se2/Mo and Cu(In, Ga)(S, Se)2/Mo interfaces. Phys. Rev. B 78, 075404 (2008)

    Google Scholar 

  137. Marsen, B., Cole, B., Miller, E.L.: Photoelectrolysis of water using thin copper gallium diselenide electrodes. Solar Energy Mater. Solar Cells 92, 1054–1058 (2008)

    Google Scholar 

  138. Jaramillo, T.F., Jørgensen, K.P., Bonde, J., Nielsen, J.H., Horch, S., Chorkendorff, I.: Identifying the active site: atomic-scale imaging and ambient reactivity of MoS2 nanocatalysts. Science 317, 100–102 (2007)

    Google Scholar 

  139. Maiolo, J.R.I.I.I., Atwater, H.A., Lewis, N.S.: Macroporous silicon as a model for silicon wire array solar cells. J. Phys. Chem. C 112, 6194–6201 (2008)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge and express their great admiration for all members of the international PEC research and development community; with special nods of appreciation to the US Department of Energy’s PEC Working Group supported by the Fuel Cells Technologies Office, and to Annex-26 of the International Energy Agency’s Hydrogen Implementing Agreement. They also thank the members of the Thin Films Laboratory at the University of Hawaii at Manoa’s Hawaii Natural Energy Institute, including Drs. Nicolas Gaillard, Bor Yann Liaw, Yuancheng Chang, and Richard Rocheleau, as well as Jess Kaneshiro, Jeremy Kowalczyk, Xi Song, and Brett Ikei for their encouragement and support to this effort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric L. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Miller, E.L., DeAngelis, A., Mallory, S. (2012). Multijunction Approaches to Photoelectrochemical Water Splitting. In: van de Krol, R., Grätzel, M. (eds) Photoelectrochemical Hydrogen Production. Electronic Materials: Science & Technology, vol 102. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1380-6_7

Download citation

Publish with us

Policies and ethics