Skip to main content

Environmental Impact of Cooling Water Treatment for Biofouling and Biocorrosion Control

  • Chapter
  • First Online:
Operational and Environmental Consequences of Large Industrial Cooling Water Systems

Abstract

Water cooling towers are major users of water worldwide. Industrial development has resulted in an increase in the use of water for cooling tower operations. This has led to an expansion of the demand for water and natural resources, particularly in threshold countries such as China, India and South Africa. It is well known that how we use water in industrial applications will drastically affect water quality downstream. What seems as an isolated incidence often results in a complex interaction and the negative effects may amplify each other. While the challenges for water management increase, there are opportunities to prevent destruction of the environment and the water source and in doing so create a sustainable environment for development and water use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bagge D, Hjelm M, Johansen C, Huber I, Gram L (2001) Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces. Appl Environ Microbiol 67:2319–2325

    Article  CAS  Google Scholar 

  • Bognolo G, John GR, Evans JG (1992) Surfactants and the environment—some recent developments. In: Karsa DR (ed) Industrial applications of surfactants (III). The Royal Society of Chemistry, Cambridge, pp 23–28

    Google Scholar 

  • Brözel VS, Cloete TE (1993a) Resistance of Pseudomonas aeruginosa to sodium dimethyldithiocarbamate by adaptation. Curr Microbiol 26:275–280

    Article  Google Scholar 

  • Brözel VS, Cloete TE (1993b) Adaptation of Pseudomonas aeruginosa to 2,2 methylene bis (4 chlorophenol). J Appl Bacteriol 74:94–99

    Article  Google Scholar 

  • Brözel VS, Cloete TE (1994) Resistance of Pseudomonas aeruginosa to isothiazolone. J Appl Bacteriol 76:576–582

    Article  Google Scholar 

  • Cloete TE (2003) Resistance mechanisms of bacteria to antimicrobial compounds. Int Biodeterior Biodegr 51:277–282

    Article  CAS  Google Scholar 

  • Cloete TE, Atlas RM (eds) (2005) Basic and applied microbiology. Van Schaik Publishers, Pretoria, South Africa

    Google Scholar 

  • Cloete TE, Jacobs L, Brözel VS (1998) The chemical control of biofouling in industrial water systems. Biodegradation 9:23–37

    Article  CAS  Google Scholar 

  • Coetser SE, Cloete TE (2005) Biofouling and biocorrosion in industrial water systems. Crit Rev Microbiol 31:213–232

    Article  CAS  Google Scholar 

  • Collier PJ, Ramsey A, Waigh RD, Douglas KT, Austin P, Gilbert P (1990) Chemical reactivity of some isothiazolone biocides. J Appl Bacteriol 69:578–584

    Article  CAS  Google Scholar 

  • Collier PJ, Austin P, Gilbert P (1991) Isothiazolone biocides: enzyme-inhibiting pro-drugs. Int J Pharm 74:195–206

    Article  CAS  Google Scholar 

  • Fitzgerald KA, Davies A, Russell AD (1992) Bacterial uptake of 14C—chlorhexidine diacetate and 14C—benzyl alcohol and the influence of phenoxyethanol and azolectin: studies with gram-negative bacteria. Microbios 70:77–91

    CAS  Google Scholar 

  • Flemming H-C (2002) Biofouling in water systems—cases, causes, countermeasures. Appl Environ Biotechnol 59:629–640

    Article  CAS  Google Scholar 

  • Flemming H-C, Greenalgh M (2009) Concept and consequences of the EU biocide guideline. In: Venkatesan R, Murthy PS, Cooksey K, Flemming HC (eds) Marine and industrial biofouling. Springer Heidelberg, New York, pp 189–199

    Chapter  Google Scholar 

  • Flemming H-C, Griebe T (2000) Control of biofilms in industrial waters and processes. In: Walker JT, Jass JJ, Surman S (eds) Biofouling of industrial waters and processes. Wiley, Chichester, pp 125–141

    Google Scholar 

  • Flemming HC, Ridgway H (2009) Conventional and alternative anti-fouling strategies. In: Venkatesan R, Murthy PSM, Cooksey K, Flemming HC (eds) Marine and industrial biofouling. Springer Heidelberg, New York, pp 103–117

    Chapter  Google Scholar 

  • Gilbert P, Brown MRW (1978) Influence of growth rate and nutrient limitation on the gross cellular composition of Pseudomonas aeruginosa and its resistance to 3- and 4-chlorophenol. J Bacteriol 133:1066–1072

    CAS  Google Scholar 

  • Gilbert P, McBain AJ, Rickard AH (2003) Formation of microbial biofilm in hygienic situations: a problem of control. Int Biodeter Biodegr 51:245–248

    Article  Google Scholar 

  • Griebe T, Flemming H-C (1998) Biocide-free antifouling strategy to protect RO membranes from biofouling. Desalination 118:153–156

    Article  CAS  Google Scholar 

  • Hyslop PA, Hinshaw DB, Halsey WA, Schraufstätter IU, Sauerheber RD, Spragg RG, Jackson JH, Cochrane CG (1988) Mechanisms of oxidant-mediated cell injury. J Biol Chem 263: 1665–1675

    CAS  Google Scholar 

  • IARC (1987) Overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1 to 42. IARC Monogr Eval Carcinog Risks Hum Suppl 7:1–400

    Google Scholar 

  • Julien C, Benezech T, Carpentier B, Faille C (2003) Identification of surface characteristics relevant to the hygienic status of stainless steel for the food industry. J Food Eng 56:77–87

    Article  Google Scholar 

  • Mattila K, Weber A, Salkinoja-Salkonen M (2002) Structure and on-site formation of biofilms in paper machine water flow. J Ind Microbiol Biotechnol 28:268–279

    Article  CAS  Google Scholar 

  • Paulus W (ed) (2005) Directory of microbicides for the protection of materials and processes. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Petrucci GR (2005) Chlorine dioxide in seawater for fouling control and cost of disinfection in potable waterworks. Desalination 182:283–291

    Article  CAS  Google Scholar 

  • Pietersen B, Brözel VS, Cloete TE (1995) The reaction of bacterial cultures to oxidising water treatment bactericides. Water SA 21:173–176

    CAS  Google Scholar 

  • Pietersen B, Brözel VS, Cloete TE (1996a) Response of Pseudomonas aeruginosa PAO following exposure to hydrogen peroxide. Water SA 22:239–244

    CAS  Google Scholar 

  • Pietersen B, Brözel VS, Cloete TE (1996b) The response of Escherichia coli K12 upon exposure to hypochlorous acid and hydrogen peroxide. Water SA 22:43–48

    CAS  Google Scholar 

  • Russell AD, Chopra I (1990) Understanding antibacterial action and resistance. Ellis Horwood, New York

    Google Scholar 

  • Russell AD, Furr JA, Maillard JY (1997) Microbial susceptibility and resistance to biocides. ASM News 63:481–487

    Google Scholar 

  • Schulte S, Wingender J, Flemming H-C (2005) Efficacy of biocides against biofilms. In: Paulus W (ed) Directory of microbicides for the protection of materials and processes. Kluwer Academic Publishers, Dordrecht, pp 90–120

    Google Scholar 

  • Shirtliff M, Leid J (2009) The role of biofilms in device-related infections. Springer, New York

    Book  Google Scholar 

  • Walker JT, Morales M (1997) Evaluation of chlorine dioxide (ClO2) for the control of biofilms. Water Sci Tech 35(11–12):319–323

    CAS  Google Scholar 

  • Wallhäuser KH (1995) Praxis der Sterilisation: Desinfektion – Konservierung, Keimidentifizierung – Betriebshygiene. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Woodcock PM (1988) Biguanides as industrial biocides. In: Payne KR (ed) Industrial biocides. Wiley, Chichester, pp 19–36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Cloete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cloete, E., Flemming, HC. (2012). Environmental Impact of Cooling Water Treatment for Biofouling and Biocorrosion Control. In: Rajagopal, S., Jenner, H., Venugopalan, V. (eds) Operational and Environmental Consequences of Large Industrial Cooling Water Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1698-2_13

Download citation

Publish with us

Policies and ethics