Skip to main content

Primary Processes in Sensory Cells: Current Advances

  • Chapter
Sensing in Nature

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 739))

Abstract

In the course of evolution, the strong and unremitting selective pressure on sensory performance has driven the acuity of sensory organs to its physical limits. As a consequence, the study of primary sensory processes illustrates impressively how far a physiological function can be improved, if the survival of a species depends on it. Sensory cells that detect single-photons, single molecules, mechanical motions on a nanometer scale, or incredibly small fluctuations of electromagnetic fields have fascinated physiologists for a long time. It is a great challenge to understand the primary sensory processes on a molecular level. This chapter points out some important recent developments in the search for primary processes in sensory cells that mediate touch perception, hearing, vision, taste, olfaction, as well as the analysis of light polarization and the orientation in the Earth’s magnetic field. The data are screened for common transduction strategies and common transduction molecules, an aspect that may be helpful for researchers in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hamill OP, Martinac B. Molecular basis of mechanotransduction in living cells. Physiol Rev 2001; 81:685–740.

    PubMed  CAS  Google Scholar 

  2. Kung C. A possible unifying principle for mechanosensation. Nature 2005; 436:647–654.

    PubMed  CAS  Google Scholar 

  3. Hamill OP. Twenty odd years of stretch-sensitive channels. PflĂ¼gers Arch—Eur J Physiol 2006; 453:333–351.

    CAS  Google Scholar 

  4. O’Hagan R, Chalfie M, Goodman MB. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 2005; 8:43–50.

    Google Scholar 

  5. Bianchi L. Mechanotransduction: touch and feel at the molecular level as modeled in Caenorhabditis elegans. Mol Neurobiol 2007; 36:254–271.

    PubMed  CAS  Google Scholar 

  6. Bounoutas A, Chalfie B. Touch sensitivity in Caenorhabditis elegans. PflĂ¼gers Arch—Eur J Physiol 2007; 454:691–702.

    CAS  Google Scholar 

  7. O’Hagan R, Chalfie M. Mechanosensation in Caenorhabditis elegans. Int Rev Neurobiol 2006; 69:169–203.

    Google Scholar 

  8. Brown AL, Liao Z, Goodman MB. MEC-2 and MEC-6 in the Caenorhabditis elegans sensory mechanotransduction complex: auxiliary subunits that enable channel activity. J Gen Physiol 2008; 131:605–616.

    PubMed  CAS  Google Scholar 

  9. Tavernarakis N, Driscoll M. Mechanotransduction in Caenorhabditis elegans: the role of DEG/ENaC ion channels. Cell Biochem Biophys 2001; 35:1–18.

    PubMed  CAS  Google Scholar 

  10. Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 2002; 82:735–767.

    PubMed  CAS  Google Scholar 

  11. Suzuki H, Kerr R, Bianchi L et al. In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 2003; 39:1005–1017.

    PubMed  CAS  Google Scholar 

  12. Chelur DS, Ernstrom GG, Goodman MB et al. The mechanosensory protein MEC-6 is a subunit of the C. elegans touch cell degenerin channel. Nature 2002; 420:669–673.

    PubMed  CAS  Google Scholar 

  13. Goodman MB, Ernstrom GG, Chelur DS et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 2002; 415:1039–1042.

    PubMed  CAS  Google Scholar 

  14. Morrow IC, Parton RG. Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic 2005; 6:725–740.

    PubMed  CAS  Google Scholar 

  15. Zhang S, Arnadottir J, Keller C et al. MEC-2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatin-like domain. Curr Biol 2004; 14:1888–1896.

    PubMed  CAS  Google Scholar 

  16. Huber TB, Schermer B, MĂ¼ller RU et al. Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Nat Acad Sci USA 2006; 103:17079–17086.

    PubMed  CAS  Google Scholar 

  17. Chalfie M, Thomson JN. Structural and functional diversity in the neuronal microtubules of Caenorhabditis elegans. J Cell Biol 1982; 93:15–23.

    PubMed  CAS  Google Scholar 

  18. Fukushige T, Siddiqui ZK, Chou M et al. MEC-12, an α-tubulin required for touch sensitivity in C. elegans. J Cell Sci 1999; 112:395–403.

    PubMed  CAS  Google Scholar 

  19. Du H, Gu G, William CM et al. Extracellular proteins needed for C. elegans mechanosensation. Neuron 1996; 16:183–194.

    PubMed  CAS  Google Scholar 

  20. Emtage L, Gu G, Hartwieg E et al. Extracellular proteins organize the mechanosensory channel complex in C. elegans touch receptor neurons. Neuron 2004; 44:795–807.

    PubMed  CAS  Google Scholar 

  21. Wetzel C, Hu J, Riethmacher D et al. A stomatin-domain protein essential for touch sensation in the mouse. Nature 2007; 445:206–209.

    PubMed  CAS  Google Scholar 

  22. Martinez-Salgado C, Benckendorff AG, Chiang L-Y et al. Stomatin and sensory neuron mechanotransduction. J Neurophysiol 2007; 98:3802–3808.

    PubMed  CAS  Google Scholar 

  23. Drew LJ, Rohrer DK, Price MPP et al. Acid-sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurons. J Physiol 2004; 556:691–710.

    PubMed  CAS  Google Scholar 

  24. Gottlieb P, Folgering J, Maroto R et al. Revisiting TRPC1 and TRPC6 mechanosensitivity. PflĂ¼gers Arch—Eur J Physiol 2008; 455:1097–1103.

    CAS  Google Scholar 

  25. Hu J, Milenkovic N, Lewin GR. The high-threshold mechanotransducer: a status report. Pain 2006; 120:3–7.

    PubMed  Google Scholar 

  26. Park SP, Kim BM, Koo JY et al. A tarantula spider toxin, GsMTx4, reduces mechanical and neuropathic pain. Pain 2008; 137:208–217.

    PubMed  CAS  Google Scholar 

  27. Corey DP, Hudspeth AJ. Response latency of vertebrate hair cells. Biophys J 1979; 26:499–506.

    PubMed  CAS  Google Scholar 

  28. Hudspeth AJ. Extracellular current flow and the site of transduction by vertebrate hair cells. J Neurosci 1982; 2:1–10.

    PubMed  CAS  Google Scholar 

  29. Corey DP, Hudspeth AJ. Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 1983; 3:962–976.

    PubMed  CAS  Google Scholar 

  30. Pickles JO, Cornis SD, Osborne MP. Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res 1984; 15:103–112.

    PubMed  CAS  Google Scholar 

  31. Furness DN, Hackney CM. Cross-links between stereocilia in the guinea pig cochlea. Hear Res 1985; 18:177–188.

    PubMed  CAS  Google Scholar 

  32. Pickles JO. Recent advances in cochlear physiology. Progr Neurobiol 1985; 24:1–42.

    CAS  Google Scholar 

  33. Holton T, Hudspeth AJ. The transduction channel of hair cells from the bull-frog characterized by noise analysis. J Physiol Lond 1986; 375:195–227.

    PubMed  CAS  Google Scholar 

  34. Hudspeth AJ. How the ear’s works work. Nature 1989; 341:397–404.

    PubMed  CAS  Google Scholar 

  35. Gillespie PG, Dumont RA, Kachar B. Have we found the tip link, transduction channel, and gating spring of the hair cell? Curr Opin Neurobiol 2005; 15:389–396.

    PubMed  CAS  Google Scholar 

  36. Corey DP. What is the hair cell transduction channel? J Physiol Lond 2006; 576:23–28.

    PubMed  CAS  Google Scholar 

  37. Fettiplace R, Hackney CM. The sensory and motor roles of auditory hair cells. Nat Rev Neurosci 2006; 7:19–29.

    PubMed  CAS  Google Scholar 

  38. Ricci AJ, Kachar B, Gale J et al. Mechano-electrical transduction: new insights into old ideas. J Membr Biol 2006; 209:71–88.

    PubMed  CAS  Google Scholar 

  39. Grant L, Fuchs PA. Auditory transduction in the mouse. PflĂ¼gers Arch—Eur J Physiol 2007; 454:793–804.

    CAS  Google Scholar 

  40. Vollrath MA, Kwan KY, Corey DP. The micromachinery of mechanotransduction in hair cells. Annu Rev Neurosci 2007; 30:339–365.

    PubMed  CAS  Google Scholar 

  41. Kozlov AS, Risler T, Hudspeth AJ. Coherent motion of stereocilia assures the concerted gating of hair-cell transduction channels. Nat Neurosci 2007; 10:87–92.

    PubMed  CAS  Google Scholar 

  42. Siemens J, Lillo C, Dumont RA et al. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 2004; 428:950–955.

    PubMed  CAS  Google Scholar 

  43. Ahmed ZM, Goodyear R, Riazuddin S et al. The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15. J Neurosci 2006; 26:7022–7034.

    PubMed  CAS  Google Scholar 

  44. Kachar B, Parakkal M, Kurc M et al. High-resolution structure of hair-cell tip links. Proc Nat Acad Sci USA 2000; 97:13336–13341.

    PubMed  CAS  Google Scholar 

  45. Corey DP. Stringing the fiddle: the inner ear’s two-part invention. Nat Neurosci 2007; 10:1232–1233.

    PubMed  CAS  Google Scholar 

  46. Kazmierczak P, Sakaguchi H, Tokita J et al. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 2007; 449:87–92.

    PubMed  CAS  Google Scholar 

  47. Furness DN, Katori Y, Kumar BN et al. The dimensions and structural attachments of tip links in mammalian cochlear hair cells and the effects of exposure to different levels of extracellular calcium. Neurosci 2008; 154:10–21.

    CAS  Google Scholar 

  48. MĂ¼ller U. Cadherins and mechanotransduction by hair cells. Curr Opin Cell Biol 2008; 20:1–10.

    Google Scholar 

  49. Sterling P, Matthews G. Structure and function of ribbon synapses. Trends Neurosci 2005; 28:20–29.

    PubMed  CAS  Google Scholar 

  50. Nouvian R, Beutner D, Parsons TD et al. Structure and function of the hair cell ribbon synapse. J Membr Biol 2006; 209:153–165.

    PubMed  CAS  Google Scholar 

  51. Eatock RA. Adaptation in hair cells. Annu Rev Neurosci 2000; 23:285–314.

    PubMed  CAS  Google Scholar 

  52. Gillespie PG, Cyr JL. Myosin-1c, the hair cell’s adaptation motor. Annu Rev Physiol 2004; 66:521–545.

    PubMed  CAS  Google Scholar 

  53. Stauffer EA, Scarborough JD, Hirono M et al. Fast adaptation in vestibular hair cells requires myosin-1c activity. Neuron 2005; 47:541–553.

    PubMed  CAS  Google Scholar 

  54. Stauffer EA, Holt JR. Sensory transduction and adaptation in inner and outer hair cells of the mouse auditory system. J Neurophysiol 2007; 98:3360–3369.

    PubMed  Google Scholar 

  55. Adamek N, Coluccio LM, Geeves MA. Calcium sensitivity of the cross-bridge cycle of Myo1c, the adaptation motor in the inner ear. Proc Nat Acad Sci USA 2008; 105:5710–5715.

    PubMed  CAS  Google Scholar 

  56. Sidi S, Friedrich R, Nicolson T. NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 2003; 301:96–99.

    PubMed  CAS  Google Scholar 

  57. Shin J-B, Adams D, Paukert M et al. Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells. Proc Nat Acad Sci USA 2005; 102:12572–12577.

    PubMed  CAS  Google Scholar 

  58. Cuajungco MP, Grimm C, Heller S. TRP channels as candidates for hearing and balance abnormalities in vertebrates. Biochim Biophys Acta 2007; 1772:1022–1027.

    PubMed  CAS  Google Scholar 

  59. Frolenkov GI. Regulation of electromotility in the cochlear outer hair cell. J Physiol 2006; 576:43–48.

    PubMed  CAS  Google Scholar 

  60. Ren T, Gillespie PG. A mechanism for active hearing. Curr Opin Neurobiol 2007; 17:498–503.

    PubMed  CAS  Google Scholar 

  61. Ashmore J. Cochlear outer hair cell motility. Physiol Rev 2008; 88:173–210.

    PubMed  CAS  Google Scholar 

  62. Zheng J, Shen W, He DZZ et al. Prestin is the motor protein of cochlear outer hair cells. Nature 2000; 405:149–155.

    PubMed  CAS  Google Scholar 

  63. Dallos P, Zheng J, Cheatham MA. Prestin and the cochlear amplifier. J Physiol 2006; 576:37–42.

    PubMed  CAS  Google Scholar 

  64. Dallos P, Wu X, Cheatham MA et al. Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 2008; 58:333–339.

    PubMed  CAS  Google Scholar 

  65. Burns ME, Arshavsky VY. Beyond counting photons: trials and trends in vertebrate visual transduction. Neuron 2005; 48:387–401.

    PubMed  CAS  Google Scholar 

  66. Fu Y, Yau KW. Phototransduction in mouse rods and cones. PflĂ¼gers Arch—Eur J Physiol 2007; 454:805–819.

    CAS  Google Scholar 

  67. Lamb TD, Pugh EN. Dark adaptation and the retinoid cycle of vision. Progr Retinal Eye Res 2004; 23:307–380.

    CAS  Google Scholar 

  68. Lamb TD, Pugh EN. Phototransduction, dark adaptation, and rhodopsin regeneration. Investig Ophthalmol Vis Sci 2006; 47:5138–5152.

    Google Scholar 

  69. Okawa H, Sampath AP. Optimization of single-photon response transmission at the rod-to-rod bipolar synapse. Physiology 2007; 22:279–286.

    PubMed  CAS  Google Scholar 

  70. Wang T, Montell C. Phototransduction and retinal degeneration in Drosophila. PflĂ¼gers Arch—Eur J Physiol 2007; 454:821–847.

    CAS  Google Scholar 

  71. Luo D-G, Xue T, Yau K-W. How vision begins: an odyssey. Proc Natl Acad Sci USA 2008; 105:9855–9862.

    PubMed  CAS  Google Scholar 

  72. Yates JR, Gilchrist A, Howell KE et al. Proteomics of organelles and large cellular structures. Nat Rev Mol Cell Biol 2005; 6:702–714.

    PubMed  CAS  Google Scholar 

  73. Andersen JS, Mann M. Organellar proteomics: turning inventories into insights. EMBO Reports 2006; 7:874–879.

    PubMed  CAS  Google Scholar 

  74. Au CE, Bell AW, Gilchrist A et al. Organellar proteomics to create the cell map. Curr Opin Cell Biol 2007; 19:376–385.

    PubMed  CAS  Google Scholar 

  75. Liu Q, Tan G, Levenkova N et al. The proteome of the mouse photoreceptor sensory cilium complex. Mol Cell Proteomics 2007; 6:1299–1317.

    PubMed  CAS  Google Scholar 

  76. Huber A. Scaffolding proteins organize multimolecular protein complexes for sensory signal transduction. Eur J Neurosci 2001; 14:769–776.

    PubMed  CAS  Google Scholar 

  77. Jemth P, Gianni S. PDZ domains: folding and binding. Biochem 2007; 46:8701–8708.

    CAS  Google Scholar 

  78. Li HS, Montell C. TRP and the PDZ protein, INAD, form the core complex required for retention of the signalplex in Drosophila photoreceptor cells. J Cell Biol 2000; 150:1411–1421.

    PubMed  CAS  Google Scholar 

  79. Montell C. TRP channels in Drosophila photoreceptor cells. J Physiol 2005; 567:45–51.

    PubMed  CAS  Google Scholar 

  80. Chyb S, Raghu P, Hardie RC. Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature 1999; 397:255–259.

    PubMed  CAS  Google Scholar 

  81. Leung H-T, Tseng-Crank J, Kim E et al. DAG lipase activity is necessary for TRP channel regulation in Drosophila photoreceptors. Neuron 2008; 58:884–896.

    PubMed  CAS  Google Scholar 

  82. Li HS, Porter JA, Montell C. Requirement of the NINAC kinase/myosin for stable termination of the visual cascade. J Neurosci 1998; 18:9601–9606.

    PubMed  CAS  Google Scholar 

  83. Wes PD, Xu XZS, Li HS et al. Termination of phototransduction requires binding of the NINAC myosin III and the PDZ protein INAD. Nat Neurosci 1999; 2:447–453.

    PubMed  CAS  Google Scholar 

  84. Mishra P, Socolich M, Wall MA et al. Dynamic scaffolding in a G protein-coupled signaling system. Cell 2007; 131: 80–92.

    PubMed  CAS  Google Scholar 

  85. Hardie RC. Dynamic platforms. Nature 2007; 450: 37–39.

    PubMed  CAS  Google Scholar 

  86. Montell C. Dynamic regulation of the INAD signaling scaffold becomes crystal clear. Cell 2007; 131: 19–21.

    PubMed  CAS  Google Scholar 

  87. Sanxaridis PD, Cronin MA, Rawat SS et al. Light-induced recruitment of INAD-signaling complexes to detergent-resistant lipid rafts in Drosophila photoreceptors. Mol Cell Neurosci 2007; 36: 36–46.

    PubMed  CAS  Google Scholar 

  88. Batra-Safferling R, Abarca-Heidemann K, Körschen HG et al. Glutamic acid-rich proteins of rod photoreceptors are natively unfolded. J Biol Chem 2006; 281: 1449–1460.

    PubMed  CAS  Google Scholar 

  89. Körschen HG, Beyermann M, MĂ¼ller F et al. Interaction of glutamic-acid-rich proteins with the cGMP signalling pathway in rod photoreceptors. Nature 1999; 400: 761–766.

    PubMed  Google Scholar 

  90. Poetsch A, Molday LL, Molday RS. The cGMP-gated channel and the related glutamic acid-rich proteins interact with perepherin-2 at the rim region of rod photoreceptor disc membranes. J Biol Chem 2001; 276: 48009–480016.

    PubMed  CAS  Google Scholar 

  91. Molday RS. ATP-binding cassette transporter ABCA4: molecular properties and role in vision and macular degeneration. J Bioenerg Biomembr 2007; 39: 507–517.

    PubMed  CAS  Google Scholar 

  92. Shoshan-Barmatz V, Zakar M, Shmuelivich F et al. Retina expresses a novel variant of the ryanodine receptor. Eur J Neurosci 2007; 26: 3113–3125.

    PubMed  Google Scholar 

  93. Fain GLF, Matthews HR, Cornwall MC et al. Adaptation in vertebrate photoreceptors. Physiol Rev 2001; 81: 117–151.

    PubMed  CAS  Google Scholar 

  94. Calvert PD, Strissel KJ, Schiesser WE et al. Light-driven translocation of signaling proteins in vertebrate photoreceptors. Trends Cell Biol 2006; 16: 560–568.

    PubMed  CAS  Google Scholar 

  95. Sokolov M, Lyubarsky AL, Strissel KJ et al. Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation. Neuron 2002; 33: 95–106.

    Google Scholar 

  96. Lobanova ES, Finkelstein S, Song H et al. Transducin translocation in rods is triggered by saturation of the GTPase-activating complex. J Neurosci 2007; 27: 1151–1160.

    PubMed  CAS  Google Scholar 

  97. Kosloff M, Elia N, Joel-Almagor T et al. Regulation of light-dependent Gq alpha translocation and morphological changes in fly photoreceptors. EMBO J 2003; 22: 459–468.

    PubMed  CAS  Google Scholar 

  98. Lee SJ, Montell C. Light-dependent translocation of visual arrestin regulated by the NINAC myosin III. Neuron 2004; 43: 95–103.

    PubMed  CAS  Google Scholar 

  99. Strissel KJ, Sokolov M, Trieu LH et al. Arrestin translocation is induced at a critical threshold of visual signaling and is superstoichiometric to bleached rhodopsin. J Neurosci 2006; 26: 1146–1153.

    PubMed  CAS  Google Scholar 

  100. Bähner M, Frechter S, Da Silva N et al. Light-induced sub-cellular translocation of Drosophila TRPL channels induces long-term adaptation and modifies the light-induced current. Neuron 2002; 34: 83–93.

    PubMed  Google Scholar 

  101. Meyer NE, Joel-Almagor T, Frechter S et al. Subcellular translocation of the eGFP-tagged TRPL channel in Drosophila photoreceptors requires activation of the phototransduction cascade. J Cell Sci 2006; 119: 2592–2603.

    PubMed  CAS  Google Scholar 

  102. Chandrashekar J, Hoon MA, Ryba NJP et al. The receptors and cells for mammalian taste. Nature 2006; 444: 288–294.

    PubMed  CAS  Google Scholar 

  103. Huang AL, Chen X, Hoon MA et al. The cells and logic for mammalian sour taste detection. Nature 2006; 444: 934–938.

    Google Scholar 

  104. Roper SD. Signal transductuion and information processing in mammalian taste buds. PflĂ¼gers Arch—Eur J Physiol 2007; 454: 759–776.

    CAS  Google Scholar 

  105. Zhao GQ, Zhang Y, Hoon MA et al. The receptors for mammalian sweet and umami taste. Cell 2003; 115: 255–266.

    PubMed  CAS  Google Scholar 

  106. Damak S, Rong M, Yasumatsu K et al. Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 2003; 301: 850–853.

    PubMed  CAS  Google Scholar 

  107. Adler E, Hoon MA, Mueller KL et al. A novel family of mammalian taste receptors. Cell 2000; 100: 693–702.

    PubMed  CAS  Google Scholar 

  108. Mueller KL, Hoon MA, Erlenbach I et al. The receptors and coding logic for bitter taste. Nature 2005; 434: 225–229.

    PubMed  CAS  Google Scholar 

  109. Behrens M, Meyerhof W. Bitter taste receptors and human bitter taste perception. Cell Mol Life Sci 2006; 63: 1501–1509.

    PubMed  CAS  Google Scholar 

  110. Behrens M, Foerster S, Staehler F et al. Gustatory expression pattern of the human TAS2R bitter receptor gene family reveals a heterogeneous population of bitter responsive taste receptor cells. J Neurosci 2007; 27: 12630–12640.

    PubMed  CAS  Google Scholar 

  111. Zhang Y, Hoon MA, Chandrashekar J et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 2003; 112: 293–301.

    PubMed  CAS  Google Scholar 

  112. McLaughlin SK, McKinnon PJ, Margolskee RF. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 1992; 357: 563–569.

    PubMed  CAS  Google Scholar 

  113. Perez CA, Huang L, Rong M et al. Nat Neurosci 2002; 5: 1169–1176.

    PubMed  CAS  Google Scholar 

  114. Zhang Z, Zhao Z, Margolskee R et al. The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J Neurosci 2007; 27: 5777–5786.

    PubMed  CAS  Google Scholar 

  115. Delay ER, Hernandez NP, Bromley K et al. Sucrose and monosodium glutamate taste thresholds and discrimination ability of T1R3 knockout mice. Chem Senses 2006; 31: 351–357.

    PubMed  CAS  Google Scholar 

  116. Maruyama Y, Pereira E, Margolskee RF et al. Umami responses in mouse taste cells indicate more than one receptor. J Neurosci 2006; 26: 2227–2234.

    PubMed  CAS  Google Scholar 

  117. Danilova V, Damak S, Margolskee RF et al. Taste responses to sweet stimuli in α-gustducin knockout and wild-type mice. Chem Senses 2006; 31: 573–580.

    PubMed  CAS  Google Scholar 

  118. Damak S, Rong M, Yasumatsu K et al. Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem Senses 2006; 31: 253–264.

    PubMed  CAS  Google Scholar 

  119. Talavera K, Yasumatsu K, Yoshida R et al. The taste transduction channel TRPM5 is a locus for bitter-sweet taste interactions. FASEB J 2008; 22: 1343–1355.

    PubMed  CAS  Google Scholar 

  120. Ma H, Yang R, Thomas SM et al. Qualitative and quantitative differences between taste buds of the rat and mouse. BMC Neurosci 2007; 8: 5.

    PubMed  Google Scholar 

  121. Li X, Li W, Wang H et al. Pseudogenization of a sweet-receptor gene accounts for cats’ indifference toward sugar. PLOS Genetics 2005; 1: e3.

    Google Scholar 

  122. Richter TA, Caicedo A, Roper SD. Sour taste stimuli evoke Ca2??and pH responses in mouse taste cells. J Physiol 2003; 547: 475–483.

    PubMed  CAS  Google Scholar 

  123. Delmas P. Polycystins: polymodal receptor/ion-channel cellular sensors. PflĂ¼gers Arch—Eur J Physiol 2005; 451: 264–276.

    CAS  Google Scholar 

  124. Lopez-Jimenez ND, Cavenagh MM, Sainz E et al. Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J Neurochem 2006; 98: 68–77.

    CAS  Google Scholar 

  125. Ishimaru Y, Inada H, Kubota M et al. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Nat Acad Sci USA 2006; 103: 12569–12574.

    PubMed  CAS  Google Scholar 

  126. Inada H, Kawabata F, Ishimaru Y et al. Off-response property of an acid-activated cation channel complex PKD1L3-PKD2L1. EMBO Reports 2008; 9: 690–697.

    PubMed  CAS  Google Scholar 

  127. Meyerhof W. Sour taste cells functionally identified. J Physiol Lond 2008; 586: 2819.

    PubMed  CAS  Google Scholar 

  128. Lin W, Finger TE, Rossier BC et al. Epithelial Na+ channel subunits in rat taste cells: localization and regulation by aldosterone. J Comp Neurol 1999; 405: 406–420.

    PubMed  CAS  Google Scholar 

  129. Avenet P, Lindemann B. Noninvasive recording of receptor cell action potentials and sustained currents from single taste buds maintained in the tongue: the response to mucosal NaCl and amiloride. J Membr Biol 1991; 124: 33–41.

    PubMed  CAS  Google Scholar 

  130. Shigemura N, Ohkuri T, Sadamitsu C et al. Amiloride-sensitive NaCl taste responses are associated with genetic variation of ENaC α-subunit in mice. Am J Physiol 2008; 294: R66–R75.

    CAS  Google Scholar 

  131. Sugita M. Taste perception and coding in the periphery. Cell Mol Life Sci 2006; 63: 2000–2015.

    PubMed  CAS  Google Scholar 

  132. Hummler E, Vallon V. Lessons from mouse mutants of epithelial sodium channel and its regulatory proteins. J Am Soc Nephrol 2005; 16: 3160–3166.

    PubMed  CAS  Google Scholar 

  133. Finger TE, Danilova V, Barrows J et al. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 2005; 310: 1495–1499.

    PubMed  CAS  Google Scholar 

  134. Huang YJ, Maruyama Y, Dvoryanchikov G et al. The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Nat Acad Sci USA 2007; 104: 6436–6441.

    PubMed  CAS  Google Scholar 

  135. Bartel DL, Sullivan SL, Lavoie EG et al. Nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) is the ecto-ATPase of type I cells in taste buds. J Comp Neurol 2006; 497: 1–12.

    PubMed  CAS  Google Scholar 

  136. Vandenbeuch A, Clapp TR, Kinnamon SC. Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci 2008; 9: 1.

    PubMed  Google Scholar 

  137. Huang YA, Maruyama Y, Stimac R et al. Presynaptic (type III) cells in mouse taste buds sense sour (acid) taste. J Physiol Lond 2008; 586: 2903–2912.

    PubMed  CAS  Google Scholar 

  138. Kataoka S, Yang R, Ishimaru Y et al. The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse. Chem Senses 2008; 33: 243–254.

    PubMed  CAS  Google Scholar 

  139. Kinnamon JC, Henzler DM, Royer SM. HVEM ultrastructural analysis of mouse fungiform taste buds, cell types, and associated synapses. Microsc Res Tech 1993; 26: 142–156.

    PubMed  CAS  Google Scholar 

  140. Romanov RA, Kolesnikov SS. Electrophysiologically identified subpopulations of taste bud cells. Neurosci Lett 2006; 395: 249–254.

    PubMed  CAS  Google Scholar 

  141. Heath TP, Melichar JK, Nutt DJ et al. Human taste thresholds are modulated by serotonin and noradrenalin. J Neurosci 2006; 26: 12664–12671.

    PubMed  CAS  Google Scholar 

  142. Ache BW, Young JM. Olfaction: diverse species, conserved principles. Neuron 2005; 48: 417–430.

    PubMed  CAS  Google Scholar 

  143. Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 1991; 65: 175–187.

    PubMed  CAS  Google Scholar 

  144. Mombaerts P. Axonal wiring in the mouse olfactory system. Annu Rev Cell Dev Biol 2006; 22: 713–737.

    PubMed  CAS  Google Scholar 

  145. Malnic B, Hirono J, Sato T et al. Combinatorial receptor codes for odors. Cell 1999; 96: 713–723.

    PubMed  CAS  Google Scholar 

  146. Mombaerts P. Odorant receptor gene choice in olfactory sensory neurons: the one receptor-one neuron hypothesis revisited. Curr Op Neurobiol 2004; 14: 31–36.

    PubMed  CAS  Google Scholar 

  147. Chess A, Simon I, Cedar H et al. Allelic inactivation regulates olfactory receptor gene expression. Cell 1994; 78: 823–834.

    PubMed  CAS  Google Scholar 

  148. Ishii T, Omura M, Mombaerts P. Protocols for two-and three-color fluorescent RNA in situ hybridization of the main and accessory olfactory epithelia in mouse. J Neurocytol 2004; 33: 657–669.

    PubMed  CAS  Google Scholar 

  149. Serizawa S, Miyamichi K, Nakatani H et al. Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 2003; 302: 2088–2094.

    PubMed  CAS  Google Scholar 

  150. Serizawa S, Miyamichi K, Sakano H. One neuron-one receptor rule in the mouse olfactory system. Trends Genet 2004; 20: 48–53.

    Google Scholar 

  151. Rothman A, Feinstein P, Hirota J et al. The promotor of the mouse odorant receptor gene M71. Mol Cell Neurosci 2005; 28: 535–546.

    PubMed  CAS  Google Scholar 

  152. Hirota J, Omura M, Mombaerts P. Differential impact of Lhx2 deficiency on expression of class I and class II odorant receptor genes in mouse. Mol Cell Neurosci 2007; 34: 679–688.

    PubMed  CAS  Google Scholar 

  153. Fuss SH, Omura M, Mombaerts P. Local and cis effects of the H element on expression of odorant receptor genes in mouse. Cell 2007; 130: 373–384.

    PubMed  CAS  Google Scholar 

  154. Lomvardas S, Barnea G, Pisapia DJ et al. Interchromosomal interactions and olfactory receptor choice. 2006; Cell 126: 403–413.

    PubMed  CAS  Google Scholar 

  155. Sicard G, Holley A. Receptor cell responses to odorants: similarities and differences among odorants. Brain Res 1984; 292: 283–296.

    PubMed  CAS  Google Scholar 

  156. Friedrich RW. Mechanisms of odor discrimination: neurophysiological and behavioral approaches. Trends Neurosci 2006; 29: 40–47.

    PubMed  CAS  Google Scholar 

  157. Spors H, Wachowiak M, Cohen LB et al. Temporal dynamics and latency patterns of receptor neuron input to the olfactory bulb. J Neurosci 2006; 26: 1247–1259.

    PubMed  CAS  Google Scholar 

  158. Wachowiak M, Shipley MT. Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb. Semin Cell Dev Biol 2006; 17: 411–423.

    PubMed  Google Scholar 

  159. Wesson DW, Carey RM, Verhagen JV et al. Rapid encoding and perception of novel odors in the rat. PLoS Biol 2008; 6: e82.

    PubMed  Google Scholar 

  160. Bhandawat V, Reisert J, Yau KW. Elementary response of olfactory receptor neurons to odorants. Science 2005; 308: 1931–1934.

    PubMed  CAS  Google Scholar 

  161. Takeuchi H, Kurahashi T. Mechanisms of signal amplification in the olfactory sensory cilia. J Neurosci 2005; 25: 11084–11091.

    PubMed  CAS  Google Scholar 

  162. Kleene SJ, Gesteland RC. Dissociation of frog olfactory epithelium with N-ethylmaleimide. Brain Res 1981; 229: 536–540.

    PubMed  CAS  Google Scholar 

  163. Stryer L. Cyclic GMP cascade of vision. Annu Rev Neurosci 1986; 9: 87–119.

    PubMed  CAS  Google Scholar 

  164. Pace U, Hanski E, Salomon Y et al. Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature 1985; 316: 255–258.

    PubMed  CAS  Google Scholar 

  165. Firestein S, Picco C, Menini A. The relation between stimulus and response in olfactory receptor cells of tiger salamander. J Physiol 1993; 468: 1–10.

    PubMed  CAS  Google Scholar 

  166. Araneda RC, Kini AD, Firestein S. The molecular receptive range of an odorant receptor. Nat Neurosci 2000; 3: 1248–1255.

    PubMed  CAS  Google Scholar 

  167. Pelosi P. The role of perireceptor events in vertebrate olfaction. Cell Mol Life Sci 2001; 58: 503–509.

    PubMed  CAS  Google Scholar 

  168. Pelosi P, Zhou JJ, Ban LP et al. Soluble proteins in insect chemical communication. Cell Mol Life Sci 2006; 63: 1658–1676.

    PubMed  CAS  Google Scholar 

  169. Ko HJ, Park TH. Enhancement of odorant detection sensitivity by the expression of odorant-binding proteins. Biosens Bioelectron 2008; 23:1017–1023.

    PubMed  CAS  Google Scholar 

  170. Laughlin JD, Ha TS, Jones DN et al. Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 2008; 133:1137–1139.

    Google Scholar 

  171. Löbel D, Jacob M, Völkner M et al. Odorants of different chemical classes interact with distinct odorant binding protein subtypes. Chem Sens 2002; 27:39–44.

    Google Scholar 

  172. Matarazzo V, ZsĂ¼rger N, Guillemot JC et al. Porcine odorant-binding protein selectively binds to a human olfactory receptor. Chem Sens 2002; 27:691–701.

    CAS  Google Scholar 

  173. Kleene SJ, Gesteland RC. Calcium-activated chloride conductance in frog olfactory cilia. J Neurosci 1991; 11:3624–3629.

    PubMed  CAS  Google Scholar 

  174. Kurahashi T, Yau KW. Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature 1993; 363:71–74.

    PubMed  CAS  Google Scholar 

  175. Lowe G, Gold GH. Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 1993; 366:283–286.

    PubMed  CAS  Google Scholar 

  176. Kleene SJ. High-gain, low-noise amplification in olfactory transduction. Biophys J 1997; 73:1010–1017.

    Google Scholar 

  177. Reuter D, Zierold K, Schröder WH et al. A depolarizing chloride current contributes to chemoelectrical transduction in olfactory sensory neurons in situ. J Neurosci 1998; 18:6623–6630.

    PubMed  CAS  Google Scholar 

  178. Kaneko H, Putzier I, Frings S et al. Chloride accumulation in mammalian olfactory sensory neurons. J Neurosci 2004; 24:7931–7938.

    PubMed  CAS  Google Scholar 

  179. Reisert J, Bauer, PJ, Yau KW et al. The Ca-activated Cl channel and its control in rat olfactory receptor neurons. J Gen Physiol 2003; 122:349–363.

    PubMed  CAS  Google Scholar 

  180. Kaneko H, Möhrlen F, Frings S. Calmodulin contributes to gating control in olfactory calcium-activated chloride channels. J Gen Physiol 2006; 127:737–748.

    PubMed  CAS  Google Scholar 

  181. Pifferi S, Pascarella G, Boccaccio A et al. Bestrophin-2 is a candidate calcium-activated chloride channel involved in olfactory transduction. Proc Nat Acad Sci USA 2006; 103:12929–12934.

    PubMed  CAS  Google Scholar 

  182. Caputo A, Caci E, Ferrera L et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 2008; 322:590–594.

    PubMed  CAS  Google Scholar 

  183. Schroeder BC, Cheng T, Jan YN et al. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 2008; 134:1019–1029.

    PubMed  CAS  Google Scholar 

  184. Yang YD, Cho H, Koo JY et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 2008. doi:10.1038/nature07313.

    Google Scholar 

  185. Reisert J, Lai J, Yau KW et al. Mechanism of excitatory Cl-response in mouse olfactory receptor neurons. Neuron 2005; 45:553–561.

    PubMed  CAS  Google Scholar 

  186. Nickell WT, Kleene NK, Kleene SJ. Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium. J Physiol 2007; 583:1005–1020.

    PubMed  CAS  Google Scholar 

  187. Smith DW, Thach S, Marshall EL et al. Mice lacking NKC1 have normal olfactory sensitivity. Physiol Behav 2008; 93:44–49.

    PubMed  CAS  Google Scholar 

  188. Kaissling KE. Olfactory perireceptor and receptor events in moths: a kinetic model. Chem Sens 2001; 26:125–150.

    CAS  Google Scholar 

  189. Leinders-Zufall T, Lane AP, Puche AC et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 2000; 405:792–796.

    PubMed  CAS  Google Scholar 

  190. Dulac C, Wagner S. Genetic analysis of brain circuits underlying pheromone signaling. Annu Rev Genet 2006; 40:449–467.

    PubMed  CAS  Google Scholar 

  191. Zufall F, Leinders-Zufall T. Mammalian pheromone sensing. Curr Op Neurobiol 2007; 17:1–7.

    Google Scholar 

  192. Dulac C, Kimchi T. Neural mechanisms underlying sex-specific behaviors in vertebrates. Curr Opin Neurobiol 2008; 17:675–683.

    Google Scholar 

  193. Leinders-Zufall T, Brennan P, Widmayer P et al. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 2004; 306:1033–1037.

    PubMed  CAS  Google Scholar 

  194. Liman E, Zufall F. Transduction channels in the vomeronasal organ. In: Frings S, Bradley, eds. Transduction Channels in Sensory Cells. Weinheim: Wiley, 2004.

    Google Scholar 

  195. Zufall F, Ukhanov K, Lucas P et al. Neurobiology of TRPC2: from gene to behavior. PflĂ¼gers Arch—Eur J Physiol 2005; 451:61–71.

    CAS  Google Scholar 

  196. Liman E. TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Nat Acad Sci USA 1999; 96:5791–5796.

    PubMed  CAS  Google Scholar 

  197. Lucas P, Ukhanov K, Leinders-Zufall T et al. A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 2003; 40:551–561.

    PubMed  CAS  Google Scholar 

  198. Stowers L, Holy TE, Meister M et al. Loss of sex discrimination and male-male aggression in mice deficient for TRPC2. Science 2002; 295:1493–1500.

    PubMed  CAS  Google Scholar 

  199. Leypold BG, Yu CR, Leinders-Zufall T et al. Altered sexual and social behaviors in trp2 mutant mice. Proc Nat Acad Sci USA 2002; 99:6376–6381.

    PubMed  CAS  Google Scholar 

  200. Kimchi T, Xu J, Dulac C. A functional circuit underlying sexual behavior in the female mouse brain. Nature 2007; 448:999–1000.

    Google Scholar 

  201. Kelliher KR, Spehr M, Li XH et al. Pheromonal recognition memory induced by TRPC2-independent vomeronasal sensing. Eur J Neurosci 2006; 23:3385–3390.

    PubMed  Google Scholar 

  202. Spehr M, Spehr J, Ukhanov K et al. Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell Mol Life Sci 2006; 63:1476–1484.

    PubMed  CAS  Google Scholar 

  203. Elsaesser R, Montani G, Tirindelli R et al. Phosphatidyl-inositide signalling proteins in a novel class of sensory cells in the mammalian olfactory epithelium. Eur J Neurosci 2005; 21:2692–2700.

    PubMed  Google Scholar 

  204. Liberles SD, Buck LB. A second class of chemosensory receptors in the olfactory epithelium. Nature 2006; 442:645–650.

    PubMed  CAS  Google Scholar 

  205. Leinders-Zufall T, Cockerham RE, Michalakis S et al. Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Nat Acad Sci USA 2007; 104:14507–14512.

    PubMed  CAS  Google Scholar 

  206. Bleckmann H, Schmitz H, von der Emde G. Nature as a model for technical sensors. J Comp Physiol A 2004; 190:971–981.

    CAS  Google Scholar 

  207. von der Emde G. Nonvisual environmental imaging and object detection thrugh active electrolocation in weakly electric fish. J Comp Physiol A 2006; 192:601–612.

    Google Scholar 

  208. Caputi AA, Budelli R. Peripheral electrosensory imaging by weakly electric fish. J Comp Physiol A 2006; 192:587–600.

    CAS  Google Scholar 

  209. Wehner R. Polarization vision—a uniform sensory capacity? J Exp Biol 2001; 204:2589–2596.

    PubMed  CAS  Google Scholar 

  210. Homberg U. In search of the sky compass in the insect brain. Naturwiss 91:199–208.

    Google Scholar 

  211. HorvĂ¡th G, VarjĂº D. Polarized Light in Animal Vision: Polarization Patterns in Nature. Berlin: Springer, 2004.

    Google Scholar 

  212. Pfeiffer K, Homberg U. Coding of azimuthal directions via time-compensated combination of celestial compass cues. Curr Biol 2007; 17:960–965.

    PubMed  CAS  Google Scholar 

  213. Krapp HG. Polarization vision: how insects find their way by watching the sky. Curr Biol 2007; 17:R557–R560.

    PubMed  CAS  Google Scholar 

  214. Kriska G, HorvĂ¡th G, Andrikovics S. Why do mayflies lay their eggs en masse on dry asphalt roads? Water-imitating polarized light reflected from asphalt attracts Ephemeroptera. J Exp Biol 1998; 201:2273–2286.

    PubMed  CAS  Google Scholar 

  215. Shashar N, Hagan R, Boal JG et al. Cuttlefish use polarization sensitivity in predation on silvery fish. Vision Res 2000; 40:71–75.

    PubMed  CAS  Google Scholar 

  216. Wehner R, Bernard GD. Photoreceptor twist: a solution to the false-color problem. Proc Natl Acad Sci USA 1993; 90:4132–4135.

    PubMed  CAS  Google Scholar 

  217. Meyer EP, Domanico V. Microvillar orientation in the photoreceptors of the ant Cataglyphis bicolor. Cell Tissue Res 1999; 295:355–361.

    PubMed  CAS  Google Scholar 

  218. HeĂŸ M, Melzer RR, Eser R et al. The structure of anchovy outer retinae (Engraulididae, Clupeifomes)— a comparative light-and electron-microscopic study using museum-stored material. J Morphol 2006; 267:1356–1380.

    PubMed  Google Scholar 

  219. Roberts NW, Needham MG. A mechanism of polarized light sensitivity in cone photoreceptors of the goldfish Carassius auratus. Biophys J 2007; 93:3241–3248.

    PubMed  CAS  Google Scholar 

  220. Ramsden SD, Anderson L, Mussi M et al. Retinal processing and opponent mechanisms mediating ultraviolet polarization sensitivity in rainbow trout (Oncorhynchus mykiss). J Exp Biol 2008; 211:1376–1385.

    PubMed  Google Scholar 

  221. Marshall J, Cronin TW, Kleinlogel S. Stomatopod eye structure and function: a review. Arthrop Struct Devel 2007; 36:420–448.

    Google Scholar 

  222. Chiou T-H, Kleinlogel S, Cronin T et al. Circular polarization vision in a stomatopod crustacean. Curr Biol 2008; 18:429–434.

    PubMed  CAS  Google Scholar 

  223. Land M. Biological optics: circularly polarised crustaceans. Curr Biol 2008; 18:R348–R349.

    PubMed  CAS  Google Scholar 

  224. Johnsen S, Lohmann KJ. The physics and neurobiology of magnetoreception. Nat Rev Neurosci 2005; 6:703–712.

    PubMed  CAS  Google Scholar 

  225. Mouritsen H, Ritz T. Magnetoreception and its use in bird navigation. Curr Opin Neurobiol 2005; 15:406–414.

    PubMed  CAS  Google Scholar 

  226. Wiltschko W, Wiltschko R. Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 2005; 191:675–693.

    Google Scholar 

  227. Wiltschko R, Wiltschko W. Magnetoreception. BioEssays 2006; 28:157–168.

    PubMed  CAS  Google Scholar 

  228. Wiltschko W, Wiltschko R. Magnetoreception in birds: two receptors for two different tasks. J Ornithol 2007; 148:S61–S76.

    Google Scholar 

  229. Ritz T, Dommer DH, Phillips JB. Shedding light on vertebrate magnetoreception. Neuron 2002; 34:503–506.

    PubMed  CAS  Google Scholar 

  230. Maeda K, Henbest KB, Cintolesi F et al. Chemical compass model of avian magnetoreception. Nature 2008; 453:387–391.

    PubMed  CAS  Google Scholar 

  231. Möller A, Sagasser S, Wiltschko et al. Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwiss 2004; 91:585–588.

    PubMed  Google Scholar 

  232. Gegear RJ, Casselman A, Waddell S et al. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 2008; 454:1014–1018.

    PubMed  CAS  Google Scholar 

  233. Liedvogel M, Maeda K, Henbest K et al. Chemical magnetoreception: bird cytochrome 1a is excited by blue light and forms long-lived radical pairs. PLoS ONE 2007; 10:e1106.

    Google Scholar 

  234. Ritz T, Adem S, Schulten K. A model for photoreceptor-based magnetoreception in birds. Biophys J 2000; 78:707–718.

    PubMed  CAS  Google Scholar 

  235. Ritz T, Thalau P, Phillips JB et al. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 2004; 429:177–180.

    PubMed  CAS  Google Scholar 

  236. Beason RC. Mechanisms of magnetic orientation in birds. Integr Comp Biol 2005; 45:565–573.

    PubMed  Google Scholar 

  237. Lohmann KJ, Lohmann CMF, Putman NF. Magnetic maps in animals: nature’s GPS. J Exp Biol 2007; 210:3697–3705.

    PubMed  Google Scholar 

  238. Lohmann KJ, Lohmann CMF. Sea turtles, lobsters, and oceanic magnetic maps. Mar Freshw Behav Physiol 2006; 39:49–64.

    Google Scholar 

  239. Dennis TE, Rayner MJ, Walker MM. Evidence that pigeons orient to geomagnetic intensity during homing. Proc R Soc B 2007; 274:1153–1158.

    PubMed  Google Scholar 

  240. Blakemore RP. Magnetotactic bacteria. Ann Rev Microbiol 1982; 36:217–238.

    CAS  Google Scholar 

  241. SchĂ¼ler D. Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev 2008; 32:654–672.

    PubMed  Google Scholar 

  242. Kirschvink JL, Gould JL. Biogenic magnetite as a basis for magnetic field detection in animals. BioSystems 1981; 13:181–201.

    PubMed  CAS  Google Scholar 

  243. Kirschvink JL, Walker MW, Diebel CE. Magnetite-based magnetoreception. Curr Opin Neurobiol 2001; 11:462–467.

    PubMed  CAS  Google Scholar 

  244. Walker MM, Dennis TE, Kirschvink JL. The magnetic sense and its use in long-distance navigation by animals. Curr Opin Neurobiol 2002; 12:735–744.

    PubMed  CAS  Google Scholar 

  245. Diebel CE, Proksch R, Green CR et al. Magnetite defines a vertebrate magnetoreceptor. Nature 2000; 406:299–302.

    PubMed  CAS  Google Scholar 

  246. Wegner RE, Begall S, Burda H. Magnetic compass in the cornea: local anaesthesia impairs orientation in a mammal. J Exp Biol 2006; 209:4747–4750.

    PubMed  Google Scholar 

  247. Holland RA, Kirschvink JL, Doak TG et al. Bats use magnetite to detect the Earth’s magnetic field. PLoS ONE 2008; 3:e1676.

    Google Scholar 

  248. Fleissner G, Holtkamp-Rotzler E, Hanzlik M et al. Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 2003; 458:350–360.

    PubMed  CAS  Google Scholar 

  249. Fleissner G, Stahl B, Thalau P et al. A novel concept of Fe-mineral-based magnetoreception: histological and physicochemical data from the upper beak of homing pigeons. Naturwiss 2007; 94:631–642.

    PubMed  CAS  Google Scholar 

  250. Hsu C-Y, Ko F-Y, Li C-W et al. Magnetoreception system in honeybees (Apis mellifera). PLoS ONE 2007; 4:e395.

    Google Scholar 

  251. Solov’yov IA, Greiner W. Theoretical analysis of an iron mineral-based magnetoreceptor model in birds. Biophys J 2007; 93:1493.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Frings, S. (2012). Primary Processes in Sensory Cells: Current Advances. In: LĂ³pez-Larrea, C. (eds) Sensing in Nature. Advances in Experimental Medicine and Biology, vol 739. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1704-0_3

Download citation

Publish with us

Policies and ethics