Skip to main content

Brain Fatty Acid Uptake

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

Abstract

The brain is a highly lipid-rich organ. Fatty acids are the primary constituents of brain lipids, and are provided either by exogenous uptake, or by de novo synthesis. Brain lipids are rich in polyunsaturated fatty acids containing double bonds at the ω3 or ω6 positions, which cannot be synthesized and therefore must be obtained from the circulation. The precise mechanism(s) by which the brain takes up these and other exogenous fatty acids have not been completely resolved. Interpretation of experiments designed to measure fatty acid transport can be problematical unless effects on subsequent metabolism of the fatty acid are also considered. Furthermore, brain fatty acid uptake is complicated by the presence of the blood-brain barrier. In this chapter, prevailing thought on how fatty acids enter the brain is presented. In the first section, brain uptake of fatty acids via unfacilitated diffusion is discussed. In the second section, we discuss the potential role(s) of candidate transport proteins and fatty acid binding proteins in the fatty acid uptake process. In the third section, current knowledge of in vivo brain fatty acid uptake is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

arachidonic acid

AAT:

aspartate aminotransferase

ACS:

acyl-CoA synthetase

BBB:

blood brain barrier

DHA:

docosahexaenoic acid

FA:

fatty acid

FABP:

fatty acid binding protein

FABPpm:

plasma membrane fatty acid binding protein

FAT:

fatty acid translocase

FATP:

fatty acid transport protein

HDL:

high-density lipoprotein

LCFA:

long-chain fatty acid

LDL:

low-density lipoprotein

LDLr:

low-density lipoprotein receptor

VLCFA:

very long-chain fatty acid

VLDL:

very low-density lipoprotein

References

  • Abumrad N, Harmon C, Ibrahimi A (1998) Membrane transport of long-chain fatty acids: evidence for a facilitated process. J Lipid Res 39:2309–2318

    PubMed  CAS  Google Scholar 

  • Abumrad NA, Ajmal M, Pothakos K, Robinson JK (2005) CD36 expression and brain function: does CD36 deficiency impact learning ability? Prostaglandins Other Lipid Mediat 77:77–83

    PubMed  CAS  Google Scholar 

  • Abumrad NA, el-Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA (1993) Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem 268:17665–17668

    PubMed  CAS  Google Scholar 

  • Arai T, Wakabayashi S, Channing MA, Dunn BB, Der MG, Bell JM, Herscovitch P, Eckelman WC, Rapoport SI, Chang MC (1995) Incorporation of [1-carbon-11]palmitate in monkey brain using PET. J Nucl Med 36:2261–2267

    PubMed  CAS  Google Scholar 

  • Bazinet RP, Rao JS, Chang L, Rapoport SI, Lee HJ (2005) Chronic valproate does not alter the kinetics of docosahexaenoic acid within brain phospholipids of the unanesthetized rat. Psychopharmacology (Berl) 182:180–185

    CAS  Google Scholar 

  • Bazinet RP, Rao JS, Chang L, Rapoport SI, Lee HJ (2006a) Chronic carbamazepine decreases the incorporation rate and turnover of arachidonic acid but not docosahexaenoic acid in brain phospholipids of the unanesthetized rat: relevance to bipolar disorder. Biol Psychiatry 59:401–407

    PubMed  CAS  Google Scholar 

  • Bazinet RP, Weis MT, Rapoport SI, Rosenberger TA (2006b) Valproic acid selectively inhibits conversion of arachidonic acid to arachidonoyl-CoA by brain microsomal long-chain fatty acyl-CoA synthetases: relevance to bipolar disorder. Psychopharmacology (Berl) 184:122–129

    CAS  Google Scholar 

  • Bezaire V, Bruce CR, Heigenhauser GJ, Tandon NN, Glatz JF, Luiken JJ, Bonen A, Spriet LL (2006) Identification of fatty acid translocase on human skeletal muscle mitochondrial membranes: essential role in fatty acid oxidation. Am J Physiol Endocrinol Metab 290:E509–E515

    PubMed  CAS  Google Scholar 

  • Bonen A, Luiken JJ, Arumugam Y, Glatz JF, Tandon NN (2000) Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J Biol Chem 275: 14501–14508

    PubMed  CAS  Google Scholar 

  • Bonen A, Luiken JJ, Liu S, Dyck DJ, Kiens B, Kristiansen S, Turcotte LP, Van Der Vusse GJ, Glatz JF (1998) Palmitate transport and fatty acid transporters in red and white muscles. Am J Physiol 275:E471–E478

    PubMed  CAS  Google Scholar 

  • Brunaldi K, Simard JR, Kamp F, Rewal C, Asawakarn T, O’Shea P, Hamilton JA (2007) Fluorescence assays for measuring fatty acid binding and transport through membranes. Methods Mol Biol 400:237–255

    PubMed  CAS  Google Scholar 

  • Campbell SE, Tandon NN, Woldegiorgis G, Luiken JJ, Glatz JF, Bonen A (2004) A novel function for fatty acid translocase (FAT)/CD36: involvement in long chain fatty acid transfer into the mitochondria. J Biol Chem 279:36235–36241

    PubMed  CAS  Google Scholar 

  • Cechetto JD, Sadacharan SK, Berk PD, Gupta RS (2002) Immunogold localization of mitochondrial aspartate aminotransferase in mitochondria and on the cell surface in normal rat tissues. Histol Histopathol 17:353–364

    PubMed  CAS  Google Scholar 

  • Chabowski A, Coort SL, Calles-Escandon J, Tandon NN, Glatz JF, Luiken JJ, Bonen A (2005) The subcellular compartmentation of fatty acid transporters is regulated differently by insulin and by AICAR. FEBS Lett 579:2428–2432

    PubMed  CAS  Google Scholar 

  • Chabowski A, Gorski J, Luiken JJ, Glatz JF, Bonen A (2007) Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane. Prostaglandins Leukot Essent Fatty Acids 77:345–353

    PubMed  CAS  Google Scholar 

  • Chang MC, Arai T, Freed LM, Wakabayashi S, Channing MA, Dunn BB, Der MG, Bell JM, Sasaki T, Herscovitch P, Eckelman WC, Rapoport SI (1997) Brain incorporation of [1-11C]arachidonate in normocapnic and hypercapnic monkeys, measured with positron emission tomography. Brain Res 755:74–83

    PubMed  CAS  Google Scholar 

  • Chang MC, Bell JM, Purdon AD, Chikhale EG, Grange E (1999) Dynamics of docosahexaenoic acid metabolism in the central nervous system: lack of effect of chronic lithium treatment. Neurochem Res 24:399–406

    PubMed  CAS  Google Scholar 

  • Chang MC, Grange E, Rabin O, Bell JM, Allen DD, Rapoport SI (1996) Lithium decreases turnover of arachidonate in several brain phospholipids. Neurosci Lett 220:171–174

    PubMed  CAS  Google Scholar 

  • Channing MA, Simpson N (1993) Radiosynthesis of 1-[11C]polyhomoallylic fatty acids. J Label Compds Radiopharm 3:541–546

    Google Scholar 

  • Chen CT, Liu Z, Ouellet M, Calon F, Bazinet RP (2009) Rapid beta-oxidation of eicosapentaenoic acid in mouse brain: an in situ study. Prostaglandins Leukot Essent Fatty Acids 80:157–163

    PubMed  CAS  Google Scholar 

  • Chen CT, Ma DW, Kim JH, Mount HT, Bazinet RP (2008a) The low density lipoprotein receptor is not necessary for maintaining mouse brain polyunsaturated fatty acid concentrations. J Lipid Res 49:147–152

    PubMed  CAS  Google Scholar 

  • Chen CT, Green JT, Orr SK, Bazinet RP (2008b) Regulation of brain polyunsaturated fatty acid uptake and turnover. Prostaglandins Leukot Essent Fatty Acids 79:85–91

    PubMed  CAS  Google Scholar 

  • Chiu HC, Kovacs A, Blanton RM, Han X, Courtois M, Weinheimer CJ, Yamada KA, Brunet S, Xu H, Nerbonne JM, Welch MJ, Fettig NM, Sharp TL, Sambandam N, Olson KM, Ory DS, Schaffer JE (2005) Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ Res 96:225–233

    PubMed  CAS  Google Scholar 

  • Cistola DP, Hamilton JA, Jackson D, Small DM (1988) Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule. Biochemistry 27:1881–1888

    PubMed  CAS  Google Scholar 

  • Coe NR, Smith AJ, Frohnert BI, Watkins PA, Bernlohr DA (1999) The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase. J Biol Chem 274:36300–36304

    PubMed  CAS  Google Scholar 

  • Contreras MA, Chang MC, Rosenberger TA, Greiner RS, Myers CS, Salem N Jr, Rapoport SI (2001) Chronic nutritional deprivation of n-3 alpha-linolenic acid does not affect n-6 arachidonic acid recycling within brain phospholipids of awake rats. J Neurochem 79:1090–1099

    PubMed  CAS  Google Scholar 

  • Contreras MA, Greiner RS, Chang MC, Myers CS, Salem N Jr, Rapoport SI (2000) Nutritional deprivation of alpha-linolenic acid decreases but does not abolish turnover and availability of unacylated docosahexaenoic acid and docosahexaenoyl-CoA in rat brain. J Neurochem 75:2392–2400

    PubMed  CAS  Google Scholar 

  • Cooper RB, Noy N, Zakim D (1989) Mechanism for binding of fatty acids to hepatocyte plasma membranes. J Lipid Res 30:1719–1726

    PubMed  CAS  Google Scholar 

  • DeMar JC Jr, Lee HJ, Ma K, Chang L, Bell JM, Rapoport SI, Bazinet RP (2006) Brain elongation of linoleic acid is a negligible source of the arachidonate in brain phospholipids of adult rats. Biochim Biophys Acta 1761:1050–1059

    PubMed  CAS  Google Scholar 

  • DeMar JC Jr, Ma K, Bell JM, Rapoport SI (2004) Half-lives of docosahexaenoic acid in rat brain phospholipids are prolonged by 15 weeks of nutritional deprivation of n-3 polyunsaturated fatty acids. J Neurochem 91:1125–1137

    PubMed  CAS  Google Scholar 

  • Demar JC Jr, Ma K, Chang L, Bell JM, Rapoport SI (2005) alpha-Linolenic acid does not contribute appreciably to docosahexaenoic acid within brain phospholipids of adult rats fed a diet enriched in docosahexaenoic acid. J Neurochem 94:1063–1076

    PubMed  CAS  Google Scholar 

  • Dietschy JM, Turley SD (2004) Thematic review series: brain Lipids Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 45:1375–1397

    PubMed  CAS  Google Scholar 

  • DiRusso CC, Li H, Darwis D, Watkins PA, Berger J, Black PN (2005) Comparative biochemical studies of the murine fatty acid transport proteins (FATP) expressed in yeast. J Biol Chem 280:16829–16837

    PubMed  CAS  Google Scholar 

  • Doege H, Baillie RA, Ortegon AM, Tsang B, Wu Q, Punreddy S, Hirsch D, Watson N, Gimeno RE, Stahl A (2006) Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology 130:1245–1258

    PubMed  CAS  Google Scholar 

  • Drewes LR (2001) Molecular architecture of the brain microvasculature: perspective on blood-brain transport. J Mol Neurosci 16:93–98, discussion 151–157

    PubMed  CAS  Google Scholar 

  • Drover VA, Nguyen DV, Bastie CC, Darlington YF, Abumrad NA, Pessin JE, London E, Sahoo D, Phillips MC (2008) CD36 mediates both cellular uptake of very long chain fatty acids and their intestinal absorption in mice. J Biol Chem 283:13108–13115

    PubMed  CAS  Google Scholar 

  • Edmond J (2001) Essential polyunsaturated fatty acids and the barrier to the brain: the components of a model for transport. J Mol Neurosci 16:181–193 discussion 215–121

    PubMed  CAS  Google Scholar 

  • Esposito G, Giovacchini G, Der M, Liow JS, Bhattacharjee AK, Ma K, Herscovitch P, Channing M, Eckelman WC, Hallett M, Carson RE, Rapoport SI (2007) Imaging signal transduction via arachidonic acid in the human brain during visual stimulation, by means of positron emission tomography. NeuroImage 34:1342–1351

    PubMed  Google Scholar 

  • Esposito G, Giovacchini G, Liow JS, Bhattacharjee AK, Greenstein D, Schapiro M, Hallett M, Herscovitch P, Eckelman WC, Carson RE, Rapoport SI (2008a) Imaging neuroinflammation in alzheimer’s disease with radiolabeled arachidonic acid and PET. J Nucl Med 49:1414–1421

    PubMed  CAS  Google Scholar 

  • Esposito G, Giovacchini G, Liow JS, Bhattacharjee AK, Greenstein D, Schapiro M, Hallett M, Herscovitch P, Eckelman WC, Carson RE, Rapoport SI (2008b) Imaging neuroinflammation in Alzheimer’s disease with radiolabeled arachidonic acid and PET. J Nucl Med 49:1414–1421

    PubMed  CAS  Google Scholar 

  • Febbraio M, Abumrad NA, Hajjar DP, Sharma K, Cheng W, Pearce SF, Silverstein RL (1999) A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J Biol Chem 274:19055–19062

    PubMed  CAS  Google Scholar 

  • Febbraio M, Hajjar DP, Silverstein RL (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 108:785–791

    PubMed  CAS  Google Scholar 

  • Gimeno RE (2007) Fatty acid transport proteins. Curr Opin Lipidol 18:271–276

    PubMed  CAS  Google Scholar 

  • Gimeno RE, Hirsch DJ, Punreddy S, Sun Y, Ortegon AM, Wu H, Daniels T, Stricker-Krongrad A, Lodish HF, Stahl A (2003a) Targeted deletion of fatty acid transport protein-4 results in early embryonic lethality. J Biol Chem 278:49512–49516

    PubMed  CAS  Google Scholar 

  • Gimeno RE, Ortegon AM, Patel S, Punreddy S, Ge P, Sun Y, Lodish HF, Stahl A (2003b) Characterization of a heart-specific fatty acid transport protein. J Biol Chem 278:16039–16044

    PubMed  CAS  Google Scholar 

  • Giovacchini G, Chang MC, Channing MA, Toczek M, Mason A, Bokde AL, Connolly C, Vuong BK, Ma Y, Der MG, Doudet DJ, Herscovitch P, Eckelman WC, Rapoport SI, Carson RE (2002) Brain incorporation of [11C]arachidonic acid in young healthy humans measured with positron emission tomography. J Cereb Blood Flow Metab 22:1453–1462

    PubMed  CAS  Google Scholar 

  • Giovacchini G, Lerner A, Toczek MT, Fraser C, Ma K, DeMar JC, Herscovitch P, Eckelman WC, Rapoport SI, Carson RE (2004) Brain incorporation of 11C-arachidonic acid, blood volume, and blood flow in healthy aging: a study with partial-volume correction. J Nucl Med 45:1471–1479

    PubMed  CAS  Google Scholar 

  • Golovko MY, Barcelo-Coblijn G, Castagnet PI, Austin S, Combs CK, Murphy EJ (2009) The role of alpha-synuclein in brain lipid metabolism: a downstream impact on brain inflammatory response. Mol Cell Biochem 326:55–66

    PubMed  CAS  Google Scholar 

  • Golovko MY, Murphy EJ (2006) Uptake and metabolism of plasma-derived erucic acid by rat brain. J Lipid Res 47:1289–1297

    PubMed  CAS  Google Scholar 

  • Green JT, Liu Z, Bazinet RP (2010) Brain phospholipid arachidonic acid half lives are not altered following 15 weeks of n-3 polyunsaturated fatty acid adequate or deprived diet. J Lipid Res 51:535–543

    PubMed  Google Scholar 

  • Gruarin P, Thorne RF, Dorahy DJ, Burns GF, Sitia R, Alessio M (2000) CD36 is a ditopic glycoprotein with the N-terminal domain implicated in intracellular transport. Biochem Biophys Res Commun 275:446–454

    PubMed  CAS  Google Scholar 

  • Guo W, Huang N, Cai J, Xie W, Hamilton JA (2006) Fatty acid transport and metabolism in HepG2 cells. Am J Physiol Gastrointest Liver Physiol 290:G528–G534

    PubMed  CAS  Google Scholar 

  • Habets DD, Coumans WA, Voshol PJ, den Boer MA, Febbraio M, Bonen A, Glatz JF, Luiken JJ (2007) AMPK-mediated increase in myocardial long-chain fatty acid uptake critically depends on sarcolemmal CD36. Biochem Biophys Res Commun 355:204–210

    PubMed  CAS  Google Scholar 

  • Hall AM, Smith AJ, Bernlohr DA (2003) Characterization of the Acyl CoA synthetase activity of purified murine fatty acid transport protein 1. J Biol Chem 278:43008–43013

    PubMed  CAS  Google Scholar 

  • Hall AM, Wiczer BM, Herrmann T, Stremmel W, Bernlohr DA (2005) enzymatic properties of purified murine fatty acid transport protein 4 and analysis of acyl-CoA synthetase activities in tissues from FATP4 null mice. J Biol Chem 280:11948–11954

    PubMed  CAS  Google Scholar 

  • Hamilton JA (1998) Fatty acid transport: difficult or easy? J Lipid Res 39:467–481

    PubMed  CAS  Google Scholar 

  • Hamilton JA, Brunaldi K (2007) A model for fatty acid transport into the brain. J Mol Neurosci 33:146–150

    PubMed  Google Scholar 

  • Hamilton JA, Kamp F (1999) How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes 48:2255–2269

    PubMed  CAS  Google Scholar 

  • Harmon CM, Abumrad NA (1993) Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. J Membr Biol 133:43–49

    PubMed  CAS  Google Scholar 

  • Hatch GM, Smith AJ, Xu FY, Hall AM, Bernlohr DA (2002) FATP1 channels exogenous FA into 1,2,3-triacyl-sn-glycerol and down- regulates sphingomyelin and cholesterol metabolism in growing 293 cells. J Lipid Res 43:1380–1389

    PubMed  CAS  Google Scholar 

  • Heinzer AK, Watkins PA, Lu JF, Kemp S, Moser AB, Li YY, Mihalik S, Powers JM, Smith KD (2003) A very long-chain acyl-CoA synthetase-deficient mouse and its relevance to X-linked adrenoleukodystrophy. Hum Mol Genet 12:1145–1154

    PubMed  CAS  Google Scholar 

  • Herrmann T, Buchkremer F, Gosch I, Hall AM, Bernlohr DA, Stremmel W (2001) Mouse fatty acid transport protein 4 (FATP4): characterization of the gene and functional assessment as a very long chain acyl-CoA synthetase. Gene 270:31–40

    PubMed  CAS  Google Scholar 

  • Herrmann T, Van Der Hoeven F, Grone HJ, Stewart AF, Langbein L, Kaiser I, Liebisch G, Gosch I, Buchkremer F, Drobnik W, Schmitz G, Stremmel W (2003) Mice with targeted disruption of the fatty acid transport protein 4 (Fatp 4, Slc27a4) gene show features of lethal restrictive dermopathy. J Cell Biol 161:1105–1115

    PubMed  CAS  Google Scholar 

  • Ibrahimi A, Bonen A, Blinn WD, Hajri T, Li X, Zhong K, Cameron R, Abumrad NA (1999) Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J Biol Chem 274:26761–26766

    PubMed  CAS  Google Scholar 

  • Igarashi M, DeMar JC Jr, Ma K, Chang L, Bell JM, Rapoport SI (2007a) Docosahexaenoic acid synthesis from alpha-linolenic acid by rat brain is unaffected by dietary n-3 PUFA deprivation. J Lipid Res 48:1150–1158

    PubMed  Google Scholar 

  • Igarashi M, DeMar JC Jr, Ma K, Chang L, Bell JM, Rapoport SI (2007b) Upregulated liver conversion of alpha-linolenic acid to docosahexaenoic acid in rats on a 15 week n-3 PUFA-deficient diet. J Lipid Res 48:152–164

    PubMed  CAS  Google Scholar 

  • Jia Z, Moulson CL, Pei Z, Miner JH, Watkins PA (2007) Fatty acid transport protein 4 is the principal very long chain fatty acyl-CoA synthetase in skin fibroblasts. J Biol Chem 282:20573–20583

    PubMed  CAS  Google Scholar 

  • Kamp F, Guo W, Souto R, Pilch PF, Corkey BE, Hamilton JA (2003) Rapid flip-flop of oleic acid across the plasma membrane of adipocytes. J Biol Chem 278:7988–7995

    PubMed  CAS  Google Scholar 

  • Kamp F, Hamilton JA (1992) pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids. Proc Natl Acad Sci USA 89:11367–11370

    PubMed  CAS  Google Scholar 

  • Kim JK, Gimeno RE, Higashimori T, Kim HJ, Choi H, Punreddy S, Mozell RL, Tan G, Stricker-Krongrad A, Hirsch DJ, Fillmore JJ, Liu ZX, Dong J, Cline G, Stahl A, Lodish HF, Shulman GI (2004) Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. J Clin Invest 113:756–763

    PubMed  CAS  Google Scholar 

  • Lisanti MP, Scherer PE, Vidugiriene J, Tang Z, Hermanowski-Vosatka A, Tu YH, Cook RF, Sargiacomo M (1994) Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol 126:111–126

    PubMed  CAS  Google Scholar 

  • Lobo S, Wiczer BM, Smith AJ, Hall AM, Bernlohr DA (2007) Fatty acid metabolism in adipocytes: functional analysis of fatty acid transport proteins 1 and 4. J Lipid Res 48:609–620

    PubMed  CAS  Google Scholar 

  • Luiken JJ, Coort SL, Koonen DP, van der Horst DJ, Bonen A, Zorzano A, Glatz JF (2004) Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Arch 448:1–15

    PubMed  CAS  Google Scholar 

  • Luiken JJ, Dyck DJ, Han XX, Tandon NN, Arumugam Y, Glatz JF, Bonen A (2002a) Insulin induces the translocation of the fatty acid transporter FAT/CD36 to the plasma membrane. Am J Physiol Endocrinol Metab 282:E491–E495

    PubMed  CAS  Google Scholar 

  • Luiken JJ, Koonen DP, Willems J, Zorzano A, Becker C, Fischer Y, Tandon NN, Van Der Vusse GJ, Bonen A, Glatz JF (2002b) Insulin stimulates long-chain fatty acid utilization by rat cardiac myocytes through cellular redistribution of FAT/CD36. Diabetes 51:3113–3119

    PubMed  CAS  Google Scholar 

  • Luiken JJ, Schaap FG, van Nieuwenhoven FA, van der Vusse GJ, Bonen A, Glatz JF (1999a) Cellular fatty acid transport in heart and skeletal muscle as facilitated by proteins. Lipids 34:S169–S175

    PubMed  CAS  Google Scholar 

  • Luiken JJ, Turcotte LP, Bonen A (1999b) Protein-mediated palmitate uptake and expression of fatty acid transport proteins in heart giant vesicles. J Lipid Res 40:1007–1016

    PubMed  CAS  Google Scholar 

  • Marbois BN, Ajie HO, Korsak RA, Sensharma DK, Edmond J (1992) The origin of palmitic acid in brain of the developing rat. Lipids 27:587–592

    PubMed  CAS  Google Scholar 

  • Meshulam T, Simard JR, Wharton J, Hamilton JA, Pilch PF (2006) Role of caveolin-1 and cholesterol in transmembrane fatty acid movement. Biochemistry 45:2882–2893

    PubMed  CAS  Google Scholar 

  • Mihalik SJ, Steinberg SJ, Pei Z, Park J, Kim DG, Heinzer AK, Dacremont G, Wanders RJ, Cuebas DA, Smith KD, Watkins PA (2002) Participation of two members of the very long-chain acyl-CoA synthetase family in bile acid synthesis and recycling. J Biol Chem 277:24771–24779

    PubMed  CAS  Google Scholar 

  • Milger K, Herrmann T, Becker C, Gotthardt D, Zickwolf J, Ehehalt R, Watkins PA, Stremmel W, Fullekrug J (2006) Cellular uptake of fatty acids driven by the ER-localized acyl-CoA synthetase FATP4. J Cell Sci 119:4678–4688

    PubMed  CAS  Google Scholar 

  • Morell P, Toews AD (1996) Biochemistry of lipids. In: Moser HW (ed) Handbook of clinical neurology. Neurodystrophies and neurolipidoses, vol 22 (66). Elsevier, Amsterdam, pp 33–49

    Google Scholar 

  • Moser H, Dubey P, Fatemi A (2004) Progress in X-linked adrenoleukodystrophy. Curr Opin Neurol 17:263–269

    PubMed  Google Scholar 

  • Moser HW, Raymond GV, Lu SE, Muenz LR, Moser AB, Xu J, Jones RO, Loes DJ, Melhem ER, Dubey P, Bezman L, Brereton NH, Odone A (2005) Follow-up of 89 asymptomatic patients with adrenoleukodystrophy treated with Lorenzo’s oil. Arch Neurol 62:1073–1080

    PubMed  Google Scholar 

  • Moulson CL, Martin DR, Lugus JJ, Schaffer JE, Lind AC, Miner JH (2003) Cloning of wrinkle-free, a previously uncharacterized mouse mutation, reveals crucial roles for fatty acid transport protein 4 in skin and hair development. Proc Natl Acad Sci USA 100:5274–5279

    PubMed  CAS  Google Scholar 

  • Muller H, Deckers K, Eckel J (2002) The fatty acid translocase (FAT)/CD36 and the glucose transporter GLUT4 are localized in different cellular compartments in rat cardiac muscle. Biochem Biophys Res Commun 293:665–669

    PubMed  CAS  Google Scholar 

  • Murphy EJ, Owada Y, Kitanaka N, Kondo H, Glatz JF (2005) Brain arachidonic acid incorporation is decreased in heart fatty acid binding protein gene-ablated mice. Biochemistry 44:6350–6360

    PubMed  CAS  Google Scholar 

  • Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93:229–240

    PubMed  CAS  Google Scholar 

  • Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 36:413–459

    PubMed  CAS  Google Scholar 

  • Ouellet M, Emond V, Chen CT, Julien C, Bourasset F, Oddo S, LaFerla F, Bazinet RP, Calon F (2009) Diffusion of docosahexaenoic and eicosapentaenoic acids through the blood-brain barrier: an in situ cerebral perfusion study. Neurochem Int 55:476–482

    PubMed  CAS  Google Scholar 

  • Pei Z, Fraisl P, Berger J, Jia Z, Forss-Petter S, Watkins PA (2004) Mouse very long-chain Acyl-CoA synthetase 3/fatty acid transport protein 3 catalyzes fatty acid activation but not fatty acid transport in MA-10 cells. J Biol Chem 279:54454–54462

    PubMed  CAS  Google Scholar 

  • Peter T Jr (1996) All about albumin. Academic, San Diego

    Google Scholar 

  • Polozova A, Gionfriddo E, Salem N Jr (2006) Effect of docosahexaenoic acid on tissue targeting and metabolism of plasma lipoproteins. Prostaglandins Leukot Essent Fatty Acids 75:183–190

    PubMed  CAS  Google Scholar 

  • Quan G, Xie C, Dietschy JM, Turley SD (2003) Ontogenesis and regulation of cholesterol metabolism in the central nervous system of the mouse. Brain Res Dev Brain Res 146:87–98

    PubMed  CAS  Google Scholar 

  • Rapoport SI (2001) In vivo fatty acid incorporation into brain phosholipids in relation to plasma availability, signal transduction and membrane remodeling. J Mol Neurosci 16:243–261, discussion 279–284

    PubMed  CAS  Google Scholar 

  • Rapoport SI, Chang MC, Spector AA (2001) Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J Lipid Res 42:678–685

    PubMed  CAS  Google Scholar 

  • Rapoport SI, Rao JS, Igarashi M (2007) Brain metabolism of nutritionally essential polyunsaturated fatty acids depends on both the diet and the liver. Prostaglandins Leukot Essent Fatty Acids 77:251–261

    PubMed  CAS  Google Scholar 

  • Richieri GV, Ogata RT, Kleinfeld AM (1992) A fluorescently labeled intestinal fatty acid binding protein – interactions with fatty acids and its use in monitoring free fatty acids. J Biol Chem 267:23495–23501

    PubMed  CAS  Google Scholar 

  • Richieri GV, Ogata RT, Kleinfeld AM (1994) Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J Biol Chem 269:23918–23930

    PubMed  CAS  Google Scholar 

  • Robinson PJ, Noronha J, DeGeorge JJ, Freed LM, Nariai T, Rapoport SI (1992) A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res Brain Res Rev 17:187–214

    PubMed  CAS  Google Scholar 

  • Schaffer JE, Lodish HF (1994) Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79:427–436

    PubMed  CAS  Google Scholar 

  • Simard JR, Kamp F, Hamilton JA (2008a) Measuring the adsorption of Fatty acids to phospholipid vesicles by multiple fluorescence probes. Biophys J 94:4493–4503

    PubMed  CAS  Google Scholar 

  • Simard JR, Meshulam T, Pillai BK, Kirber MT, Brunaldi K, Xu S, Pilch PF, Hamilton JA (2010) Caveolins sequester fatty acids on the cytoplasmic leaflet of the plasma membrane, augment triglyceride formation and protect cells from lipotoxicity. J Lipid Res 51:914–922

    Google Scholar 

  • Simard JR, Pillai BK, Hamilton JA (2008b) Fatty acid flip-flop in a model membrane is faster than desorption into the aqueous phase. Biochemistry 47:9081–9089

    PubMed  CAS  Google Scholar 

  • Stahl A (2004) A current review of fatty acid transport proteins (SLC27). Pflugers Arch 447:722–727

    PubMed  CAS  Google Scholar 

  • Stahl A, Evans JG, Pattel S, Hirsch D, Lodish HF (2002) Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes. Dev Cell 2:477–488

    PubMed  CAS  Google Scholar 

  • Stahl A, Gimeno RE, Tartaglia LA, Lodish HF (2001) Fatty acid transport proteins: a current view of a growing family. Trends Endocrinol Metab 12:266–273

    PubMed  CAS  Google Scholar 

  • Stahl A, Hirsch DJ, Gimeno RE, Punreddy S, Ge P, Watson N, Patel S, Kotler M, Raimondi A, Tartaglia LA, Lodish HF (1999) Identification of the major intestinal fatty acid transport protein. Mol Cell 4:299–308

    PubMed  CAS  Google Scholar 

  • Steinberg SJ, Mihalik SJ, Kim DG, Cuebas DA, Watkins PA (2000) The human liver-specific homolog of very long-chain acyl-CoA synthetase Is cholate:CoA ligase. J Biol Chem 275: 15605–15608

    PubMed  CAS  Google Scholar 

  • Steinberg SJ, Wang SJ, Kim DG, Mihalik SJ, Watkins PA (1999a) Human very-long-chain acyl-CoA synthetase: cloning, topography, and relevance to branched-chain fatty acid metabolism [In Process Citation]. Biochem Biophys Res Commun 257:615–621

    PubMed  CAS  Google Scholar 

  • Steinberg SJ, Wang SJ, McGuinness MC, Watkins PA (1999b) Human liver-specific very-long-chain acyl-coenzyme A synthetase: cDNA cloning and characterization of a second enzymatically active protein. Mol Genet Metab 68:32–42

    PubMed  CAS  Google Scholar 

  • Storch J, Corsico B (2008) The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Annu Rev Nutr 28:73–95

    PubMed  CAS  Google Scholar 

  • Stremmel W, Strohmeyer G, Berk PD (1986) Hepatocellular uptake of oleate is energy dependent, sodium linked, and inhibited by an antibody to a hepatocyte plasma membrane fatty acid binding protein. Proc Natl Acad Sci USA 83:3584–3588

    PubMed  CAS  Google Scholar 

  • Stremmel W, Strohmeyer G, Borchard F, Kochwa S, Berk PD (1985) Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes. Proc Natl Acad Sci USA 82:4–8

    PubMed  CAS  Google Scholar 

  • Stump DD, Fan X, Berk PD (2001) Oleic acid uptake and binding by rat adipocytes define dual pathways for cellular fatty acid uptake. J Lipid Res 42:509–520

    PubMed  CAS  Google Scholar 

  • Stump DD, Zhou SL, Berk PD (1993) Comparison of plasma membrane FABP and mitochondrial isoform of aspartate aminotransferase from rat liver. Am J Physiol 265:G894–G902

    PubMed  CAS  Google Scholar 

  • Takasato Y, Rapoport SI, Smith QR (1984) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol 247:H484–H493

    PubMed  CAS  Google Scholar 

  • Thies F, Delachambre MC, Bentejac M, Lagarde M, Lecerf J (1992) Unsaturated fatty acids esterified in 2-acyl-l-lysophosphatidylcholine bound to albumin are more efficiently taken up by the young rat brain than the unesterified form. J Neurochem 59:1110–1116

    PubMed  CAS  Google Scholar 

  • Trotter PJ, Ho SY, Storch J (1996) Fatty acid uptake by Caco-2 human intestinal cells. J Lipid Res 37:336–346

    PubMed  CAS  Google Scholar 

  • Uchida Y, Kondo N, Orii T, Hashimoto T (1996) Purification and properties of rat liver peroxisomal very-long-chain acyl-CoA synthetase. J Biochem (Tokyo) 119:565–571

    CAS  Google Scholar 

  • Uchiyama A, Aoyama T, Kamijo K, Uchida Y, Kondo N, Orii T, Hashimoto T (1996) Molecular cloning of cDNA encoding rat very long-chain acyl-CoA synthetase. J Biol Chem 271: 30360–30365

    PubMed  CAS  Google Scholar 

  • Umhau JC, Zhou W, Carson RE, Rapoport SI, Polozova A, Demar J, Hussein N, Bhattacharjee AK, Ma K, Esposito G, Majchrzak S, Herscovitch P, Eckelman WC, Kurdziel KA, Salem N Jr (2009) Imaging incorporation of circulating docosahexaenoic acid into the human brain using positron emission tomography. J Lipid Res 50:1259–1268

    PubMed  CAS  Google Scholar 

  • Watkins PA (2008) Very-long-chain Acyl-CoA synthetases. J Biol Chem 283:1773–1777

    PubMed  CAS  Google Scholar 

  • Watkins PA, Maiguel D, Jia Z, Pevsner J (2007) Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. J Lipid Res 48:2736–2750

    PubMed  CAS  Google Scholar 

  • Wu Q, Kazantzis M, Doege H, Ortegon AM, Tsang B, Falcon A, Stahl A (2006a) Fatty acid transport protein 1 is required for nonshivering thermogenesis in brown adipose tissue. Diabetes 55:3229–3237

    PubMed  CAS  Google Scholar 

  • Wu Q, Ortegon AM, Tsang B, Doege H, Feingold KR, Stahl A (2006b) FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Mol Cell Biol 26:3455–3467

    PubMed  CAS  Google Scholar 

  • Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, Sternbach DD, Lehmann JM, Wisely GB, Willson TM, Kliewer SA, Milburn MV (1999) Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 3:397–403

    PubMed  CAS  Google Scholar 

  • Zhang F, Kamp F, Hamilton JA (1996) Dissociation of long and very long chain fatty acids from phospholipid bilayers. Biochemistry 35:16055–16060

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Watkins M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hamilton, J.A., Brunaldi, K., Bazinet, R.P., Watkins, P.A. (2012). Brain Fatty Acid Uptake. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_27

Download citation

Publish with us

Policies and ethics