Skip to main content

Nanomedicine in Cancer Diagnosis and Therapy: Converging Medical Technologies Impacting Healthcare

  • Chapter
  • First Online:
Nanomedicine

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Nanomedicine is the application of nanotechnology to medicine. Nanomedicine aims to overcome unmet needs in disease management and treatment through interventions on the nanoscale that correlate with the operational scale of biological macromolecules inside cells. Although widely applicable for the diagnosis and treatment of many diseases nanomedicine is most progressed in research directed at the diagnosis and treatment of cancer. Today, researchers are constantly developing new nanomaterials, nanodevices, and nanoparticles with different applications in mind. Of particular interest here are nanoparticles that are genuine particles (approx 100 nm in dimension). These nanoparticles are intended to enable the functional delivery of therapeutic agents to disease-target cells for treatment and/or of imaging agents to disease-target cells for diagnosis. They are assembled typically from “tool-kits” of different chemical components that act collectively to overcome biological barriers (biobarriers). The functional capabilities of nanoparticles should vary according to functional requirements. Fortunately the nanoscale allows for an impressive level of diversity in capabilities to enable corresponding nanoparticles to address an equally diverse range of functional requirements. Therefore, nanoparticles are now considered appropriate vehicles to lead to an integrated, personalized approach to diagnosis and therapy in healthcare, most especially where future cancer disease management is concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171. doi:10.1038/nrc1566

    CAS  Google Scholar 

  2. Srinivas PR, Barker P, Srivastava S (2002) Nanotechnology in early detection of cancer. Lab Investig J Tech Methods Pathol 82(5):657–662

    Google Scholar 

  3. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288. doi:10.1146/annurev.bioeng.9.060906.152025

    CAS  Google Scholar 

  4. Wang MD, Shin DM, Simons JW, Nie S (2007) Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther 7(6):833–837. doi:10.1586/14737140.7.6.833

    CAS  Google Scholar 

  5. Anon (2007) Cancer nanotechnology: small, but heading for the big time. Nat Rev Drug Discov 6(3):174–175. doi:10.1038/nrd2285

    Google Scholar 

  6. EPT Nanomedicine (2009) Roadmaps in nanomedicine towards 2020. http://www.etp-nanomedicine.eu/public/press-documents/publications/etpn-publications/091022_ETPN_Report_2009.pdf. Accessed 22 June 2014

  7. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537

    CAS  Google Scholar 

  8. Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn M, Waltham M, Pergamenschikov A, Lee JC, Lashkari D, Shalon D, Myers TG, Weinstein JN, Botstein D, Brown PO (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24(3):227–235. doi:10.1038/73432

    CAS  Google Scholar 

  9. Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT, Scudiero DA, Eisen MB, Sausville EA, Pommier Y, Botstein D, Brown PO, Weinstein JN (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet 24(3):236–244. doi:10.1038/73439

    CAS  Google Scholar 

  10. Rubin MA (2001) Use of laser capture microdissection, cDNA microarrays, and tissue microarrays in advancing our understanding of prostate cancer. J Pathol 195(1):80–86. doi:10.1002/path.892

    CAS  Google Scholar 

  11. Evans WE, Relling MV (2004) Moving towards individualized medicine with pharmacogenomics. Nature 429(6990):464–468. doi:10.1038/nature02626

    CAS  Google Scholar 

  12. Petros WP, Evans WE (2004) Pharmacogenomics in cancer therapy: is host genome variability important? Trends Pharmacol Sci 25(9):457–464. doi:10.1016/j.tips.2004.07.007

    CAS  Google Scholar 

  13. Hwang SR, Ku SH, Joo MK, Kim SH, Kwon IC (2014) Theranostic nanomaterials for image-guided gene therapy. MRS Bull 39(01):44–50

    CAS  Google Scholar 

  14. Sun NF, Liu ZA, Huang WB, Tian AL, Hu SY (2014) The research of nanoparticles as gene vector for tumor gene therapy. Crit Rev Oncol Hematol 89(3):352–357

    Google Scholar 

  15. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15(8):541–555

    CAS  Google Scholar 

  16. Miller AD (2008) Towards safe nanoparticle technologies for nucleic acid therapeutics. Tumori 94(2):234–245

    CAS  Google Scholar 

  17. Kostarelos K, Miller AD (2005) Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors. Chem Soc Rev 34(11):970–994

    CAS  Google Scholar 

  18. Fletcher S, Ahmad A, Perouzel E, Heron A, Miller AD, Jorgensen MR (2006) In vivo studies of dialkynoyl analogues of DOTAP demonstrate improved gene transfer efficiency of cationic liposomes in mouse lung. J Med Chem 49:349–357

    CAS  Google Scholar 

  19. Fletcher S, Ahmad A, Perouzel E, Jorgensen MR, Miller AD (2006) A dialkanoyl analogue of DOPE improves gene transfer of lower-charged, cationic lipoplexes. Org Biomol Chem 4:196–199

    CAS  Google Scholar 

  20. Fletcher S, Ahmad A, Price WS, Jorgensen MR, Miller AD (2008) Biophysical properties of CDAN/DOPE-analogue lipoplexes account for enhanced gene delivery. Chembiochem 9(3):455–463

    CAS  Google Scholar 

  21. Miller AD (2003) The problem with cationic liposome/micelle-based non-viral vector systems for gene therapy. Curr Med Chem 10(14):1195–1211

    CAS  Google Scholar 

  22. Miller AD (2004) Gene therapy needs robust synthetic nonviral platform technologies. Chembiochem 5(1):53–54

    CAS  Google Scholar 

  23. Miller AD (2004) Nonviral liposomes. In: Springer CJ (ed) Methods in molecular medicine, vol 90. Humana Press, Totowa, pp 107–137

    Google Scholar 

  24. Oliver M, Jorgensen MR, Miller AD (2004) The facile solid-phase synthesis of cholesterol-based polyamine lipids. Tetrahedron Lett 45:3105–3108

    CAS  Google Scholar 

  25. Spagnou S, Miller AD, Keller M (2004) Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry 43(42):13348–13356

    CAS  Google Scholar 

  26. Tagawa T, Manvell M, Brown N, Keller M, Perouzel E, Murray KD, Harbottle RP, Tecle M, Booy F, Brahimi-Horn MC, Coutelle C, Lemoine NR, Alton EWFW, Miller AD (2002) Characterisation of LMD virus-like nanoparticles self-assembled from cationic liposomes, adenovirus core peptide μ (mu) and plasmid DNA. Gene Ther 9(9):564–576

    CAS  Google Scholar 

  27. Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA (2009) Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomedicine 4:1–7

    CAS  Google Scholar 

  28. Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316. doi:10.1158/1078-0432.CCR-07-1441

    CAS  Google Scholar 

  29. Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782. doi:10.1038/nrd2614

    CAS  Google Scholar 

  30. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20. doi:10.1021/nn900002m

    CAS  Google Scholar 

  31. Lammers T, Hennink WE, Storm G (2008) Tumour-targeted nanomedicines: principles and practice. Br J Cancer 99(3):392–397. doi:10.1038/sj.bjc.6604483

    CAS  Google Scholar 

  32. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760. doi:10.1038/nnano.2007.387

    CAS  Google Scholar 

  33. Tanaka T, Decuzzi P, Cristofanilli M, Sakamoto JH, Tasciotti E, Robertson FM, Ferrari M (2009) Nanotechnology for breast cancer therapy. Biomed Microdevices 11(1):49–63. doi:10.1007/s10544-008-9209-0

    CAS  Google Scholar 

  34. Youan BB (2008) Impact of nanoscience and nanotechnology on controlled drug delivery. Nanomedicine (Lond) 3(4):401–406. doi:10.2217/17435889.3.4.401

    Google Scholar 

  35. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626. doi:10.1016/j.addr.2008.08.005

    CAS  Google Scholar 

  36. Zolnik BS, Sadrieh N (2009) Regulatory perspective on the importance of ADME assessment of nanoscale material containing drugs. Adv Drug Deliv Rev 61(6):422–427. doi:10.1016/j.addr.2009.03.006

    CAS  Google Scholar 

  37. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  Google Scholar 

  38. Kobayashi H, Watanabe R, Choyke PL (2014) Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 4(1):81–89

    CAS  Google Scholar 

  39. Thanou M, Duncan R (2003) Polymer-protein and polymer-drug conjugates in cancer therapy. Curr Opin Investig Drugs 4(6):701–709

    CAS  Google Scholar 

  40. Cohen BE, Bangham AD (1972) Diffusion of small non-electrolytes across liposome membranes. Nature 236(5343):173–174

    CAS  Google Scholar 

  41. Johnson SM, Bangham AD (1969) Potassium permeability of single compartment liposomes with and without valinomycin. Biochim Biophys Acta 193(1):82–91

    CAS  Google Scholar 

  42. Lasic D (ed) (1998) Medical applications of liposomes. Elsevier, Amsterdaam

    Google Scholar 

  43. Lin Q, Chen J, Zhang Z, Zheng G (2014) Lipid-based nanoparticles in the systemic delivery of siRNA. Nanomedicine 9(1):105–120

    CAS  Google Scholar 

  44. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822. doi:10.1126/science.1095833

    CAS  Google Scholar 

  45. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160. doi:10.1038/nrd1632

    CAS  Google Scholar 

  46. Forssen EA, Tokes ZA (1983) Improved therapeutic benefits of doxorubicin by entrapment in anionic liposomes. Cancer Res 43(2):546–550

    CAS  Google Scholar 

  47. Treat J, Greenspan A, Forst D, Sanchez JA, Ferrans VJ, Potkul LA, Woolley PV, Rahman A (1990) Antitumor activity of liposome-encapsulated doxorubicin in advanced breast cancer: phase II study. J Natl Cancer Inst 82(21):1706–1710

    CAS  Google Scholar 

  48. Robert NJ, Vogel CL, Henderson IC, Sparano JA, Moore MR, Silverman P, Overmoyer BA, Shapiro CL, Park JW, Colbern GT, Winer EP, Gabizon AA (2004) The role of the liposomal anthracyclines and other systemic therapies in the management of advanced breast cancer. Semin Oncol 31(6 Suppl 13):106–146

    CAS  Google Scholar 

  49. Straubinger RM, Lopez NG, Debs RJ, Hong K, Papahadjopoulos D (1988) Liposome-based therapy of human ovarian cancer: parameters determining potency of negatively charged and antibody-targeted liposomes. Cancer Res 48(18):5237–5245

    CAS  Google Scholar 

  50. Allen TM, Martin FJ (2004) Advantages of liposomal delivery systems for anthracyclines. Semin Oncol 31(6 Suppl 13):5–15

    CAS  Google Scholar 

  51. Gabizon A, Martin F (1997) Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs 54(Suppl 4):15–21

    CAS  Google Scholar 

  52. Gabizon A, Shmeeda H, Barenholz Y (2003) Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinet 42(5):419–436

    CAS  Google Scholar 

  53. Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD, Redemann C et al (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A 88(24):11460–11464

    CAS  Google Scholar 

  54. Woodle MC, Lasic DD (1992) Sterically stabilized liposomes. Biochim Biophys Acta 1113(2):171–199

    CAS  Google Scholar 

  55. Damascelli B, Cantu G, Mattavelli F, Tamplenizza P, Bidoli P, Leo E, Dosio F, Cerrotta AM, Di Tolla G, Frigerio LF, Garbagnati F, Lanocita R, Marchiano A, Patelli G, Spreafico C, Ticha V, Vespro V, Zunino F (2001) Intraarterial chemotherapy with polyoxyethylated castor oil free paclitaxel, incorporated in albumin nanoparticles (ABI-007): phase II study of patients with squamous cell carcinoma of the head and neck and anal canal: preliminary evidence of clinical activity. Cancer 92(10):2592–2602

    CAS  Google Scholar 

  56. Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, Tao C, De T, Beals B, Dykes D, Noker P, Yao R, Labao E, Hawkins M, Soon-Shiong P (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12(4):1317–1324. doi:10.1158/1078-0432.CCR-05-1634

    CAS  Google Scholar 

  57. Miele E, Spinelli GP, Miele E, Tomao F, Tomao S (2009) Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomedicine 4:99–105

    CAS  Google Scholar 

  58. Vogel SM, Minshall RD, Pilipovic M, Tiruppathi C, Malik AB (2001) Albumin uptake and transcytosis in endothelial cells in vivo induced by albumin-binding protein. Am J Physiol Lung Cell Mol Physiol 281(6):L1512–L1522

    CAS  Google Scholar 

  59. Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60(8):876–885. doi:10.1016/j.addr.2007.08.044

    CAS  Google Scholar 

  60. Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6(3):659–668. doi:10.1021/mp900015y

    CAS  Google Scholar 

  61. Aissaoui A, Chami M, Hussein M, Miller AD (2011) Efficient topical delivery of plasmid DNA to lung in vivo mediated by putative triggered, PEGylated pDNA nanoparticles. J Control Release 154:275–284

    CAS  Google Scholar 

  62. Carmona S, Jorgensen MR, Kolli S, Crowther C, Salazar FH, Marion PL, Fujino M, Natori Y, Thanou M, Arbuthnot P, Miller AD (2009) Controlling HBV replication in vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles. Mol Pharm 6(3):706–717

    CAS  Google Scholar 

  63. Drake CR, Aissaoui A, Argyros O, Serginson JM, Monnery BD, Thanou M, Steinke JHG, Miller AD (2010) Bioresponsive small molecule polyamines as non-cytotoxic alternative to polyethylenimine. Mol Pharm 7(6):2040–2055

    CAS  Google Scholar 

  64. Drake CR, Aissaoui A, Argyros O, Thanou M, Steinke JH, Miller AD (2013) Examination of the effect of increasing the number of intra-disulfide amino functional groups on the performance of small molecule cyclic polyamine disulfide vectors. J Control Release 171(1): 81–90. doi:10.1016/j.jconrel.2013.02.014

  65. Kenny GD, Kamaly N, Kalber TL, Brody LP, Sahuri M, Shamsaei E, Miller AD, Bell JD (2011) Novel multifunctional nanoparticle mediates siRNA tumour delivery, visualisation and therapeutic tumour reduction in vivo. J Control Release 149(2):111–116. doi:10.1016/j.jconrel.2010.09.020

  66. Kolli S, Wong SP, Harbottle R, Johnston B, Thanou M, Miller AD (2013) pH-triggered nanoparticle mediated delivery of siRNA to liver cells in vitro and in vivo. Bioconjug Chem 24(3):314–332. doi:10.1021/bc3004099

    CAS  Google Scholar 

  67. Mével M, Kamaly N, Carmona S, Oliver MH, Jorgensen MR, Crowther C, Salazar FH, Marion PL, Fujino M, Natori Y, Thanou M, Arbuthnot P, Yaouanc J-J, Jaffres PA, Miller AD (2010) DODAG; a versatile new cationic lipid that mediates efficient delivery of pDNA and siRNA. J Control Release 143:222–232

    Google Scholar 

  68. Andreu A, Fairweather N, Miller AD (2008) Clostridium neurotoxin fragments as potential targeting moieties for liposomal gene delivery to the CNS. Chembiochem 9(2):219–231

    CAS  Google Scholar 

  69. Chen J, Jorgensen MR, Thanou M, Miller AD (2011) Post-coupling strategy enables true receptor-targeted nanoparticles. J RNAi Gene Silenc Int j RNA Gene Target Res 7:449–455

    CAS  Google Scholar 

  70. Wang M, Lowik DW, Miller AD, Thanou M (2009) Targeting the urokinase plasminogen activator receptor with synthetic self-assembly nanoparticles. Bioconjug Chem 20(1):32–40

    CAS  Google Scholar 

  71. Wang M, Miller AD, Thanou M (2013) Effect of surface charge and ligand organization on the specific cell-uptake of uPAR-targeted nanoparticles. J Drug Target 21(7):684–692. doi:10.3109/1061186X.2013.805336

    CAS  Google Scholar 

  72. Drummond DC, Noble CO, Guo Z, Hong K, Park JW, Kirpotin DB (2006) Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Cancer Res 66(6):3271–3277. doi:10.1158/0008-5472.CAN-05-4007

    CAS  Google Scholar 

  73. Flexman JA, Yung A, Yapp DT, Ng SS, Kozlowski P (2008) Assessment of vessel size by MRI in an orthotopic model of human pancreatic cancer. Conf Proc IEEE Eng Med Biol Soc 2008:851–854. doi:10.1109/IEMBS.2008.4649287

    Google Scholar 

  74. Ting G, Chang CH, Wang HE (2009) Cancer nanotargeted radiopharmaceuticals for tumor imaging and therapy. Anticancer Res 29(10):4107–4118

    CAS  Google Scholar 

  75. Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM, Vile RG, Stewart JS (2001) Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 7(2):243–254

    CAS  Google Scholar 

  76. Erdogan S (2009) Liposomal nanocarriers for tumor imaging. J Biomed Nanotechnol 5(2):141–150

    CAS  Google Scholar 

  77. Mulder WJ, Strijkers GJ, van Tilborg GA, Griffioen AW, Nicolay K (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19(1):142–164. doi:10.1002/nbm.1011

    CAS  Google Scholar 

  78. Devoisselle JM, Vion-Dury J, Galons JP, Confort-Gouny S, Coustaut D, Canioni P, Cozzone PJ (1988) Entrapment of gadolinium-DTPA in liposomes. Characterization of vesicles by P-31 NMR spectroscopy. Invest Radiol 23(10):719–724

    CAS  Google Scholar 

  79. Unger E, Fritz T, Shen DK, Wu G (1993) Manganese-based liposomes. Comparative approaches. Invest Radiol 28(10):933–938

    CAS  Google Scholar 

  80. Kozlowska D, Foran P, MacMahon P, Shelly MJ, Eustace S, O’Kennedy R (2009) Molecular and magnetic resonance imaging: the value of immunoliposomes. Adv Drug Deliv Rev 61(15):1402–1411. doi:10.1016/j.addr.2009.09.003

    CAS  Google Scholar 

  81. Kabalka GW, Davis MA, Buonocore E, Hubner K, Holmberg E, Huang L (1990) Gd-labeled liposomes containing amphipathic agents for magnetic resonance imaging. Invest Radiol 25(Suppl 1):S63–S64

    CAS  Google Scholar 

  82. van Tilborg GA, Strijkers GJ, Pouget EM, Reutelingsperger CP, Sommerdijk NA, Nicolay K, Mulder WJ (2008) Kinetics of avidin-induced clearance of biotinylated bimodal liposomes for improved MR molecular imaging. Magn Reson Med 60(6):1444–1456. doi:10.1002/mrm.21780

    Google Scholar 

  83. Kamaly N, Kalber T, Kenny G, Bell J, Jorgensen M, Miller A (2010) A novel bimodal lipidic contrast agent for cellular labelling and tumour MRI. Org Biomol Chem 8(1):201–211. doi:10.1039/b910561a

    CAS  Google Scholar 

  84. Kamaly N, Kalber T, Thanou M, Bell JD, Miller AD (2009) Folate receptor targeted bimodal liposomes for tumor magnetic resonance imaging. Bioconjug Chem 20(4):648–655. doi:10.1021/bc8002259

    CAS  Google Scholar 

  85. Kamaly N, Kalber T, Ahmad A, Oliver MH, So PW, Herlihy AH, Bell JD, Jorgensen MR, Miller AD (2008) Bimodal paramagnetic and fluorescent liposomes for cellular and tumor magnetic resonance imaging. Bioconjug Chem 19(1):118–129. doi:10.1021/bc7001715

    CAS  Google Scholar 

  86. Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59(6):478–490. doi:10.1016/j.addr.2007.04.007

    CAS  Google Scholar 

  87. Cavalli R, Caputo O, Carlotti ME, Trotta M, Scarnecchia C, Gasco MR (1997) Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. Int J Pharm 148(1):47–54

    CAS  Google Scholar 

  88. Muller RH, Mehnert W, Lucks JS (1995) Solid lipid nanoparticles (Sln) – an alternative colloidal carrier system for controlled drug-delivery. Eur J Pharm Biopharm 41(1):62–69

    CAS  Google Scholar 

  89. Morel S, Terreno E, Ugazio E, Aime S, Gasco MR (1998) NMR relaxometric investigations of solid lipid nanoparticles (SLN) containing gadolinium(III) complexes. Eur J Pharm Biopharm 45(2):157–163

    CAS  Google Scholar 

  90. Tomalia DA, Uppuluri S, Swanson DR (1999) Dendritic macromolecules: a fourth major class of polymer architecture – new properties driven by architecture. Mater Res Soc Symp Proc 543:289–298

    CAS  Google Scholar 

  91. Hawker CJ, Frechet JMJ (1990) Preparation of polymers with controlled molecular architecture – a new convergent approach to dendritic macromolecules. J Am Chem Soc 112(21):7638–7647

    CAS  Google Scholar 

  92. Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications–reflections on the field. Adv Drug Deliv Rev 57(15):2106–2129. doi:10.1016/j.addr.2005.09.018

    CAS  Google Scholar 

  93. Wolinsky JB, Grinstaff MW (2008) Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 60(9):1037–1055. doi:10.1016/j.addr.2008.02.012

    CAS  Google Scholar 

  94. Barth RF, Coderre JA, Vicente MG, Blue TE (2005) Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res 11(11):3987–4002. doi:10.1158/1078-0432.CCR-05-0035

    CAS  Google Scholar 

  95. Wiener EC, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA, Lauterbur PC (1994) Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 31(1):1–8

    CAS  Google Scholar 

  96. Harisinghani MG, Saksena MA, Hahn PF, King B, Kim J, Torabi MT, Weissleder R (2006) Ferumoxtran-10-enhanced MR lymphangiography: does contrast-enhanced imaging alone suffice for accurate lymph node characterization? AJR Am J Roentgenol 186(1):144–148. doi:10.2214/AJR.04.1287

    Google Scholar 

  97. Sharma R, Saini S, Ros PR, Hahn PF, Small WC, de Lange EE, Stillman AE, Edelman RR, Runge VM, Outwater EK, Morris M, Lucas M (1999) Safety profile of ultrasmall superparamagnetic iron oxide ferumoxtran-10: phase II clinical trial data. J Magn Reson Imagin JMRI 9(2):291–294

    CAS  Google Scholar 

  98. Islam T, Harisinghani MG (2009) Overview of nanoparticle use in cancer imaging. Cancer Biomark Sect A Dis Markers 5(2):61–67. doi:10.3233/CBM-2009-0578

    CAS  Google Scholar 

  99. Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Kim K, Jon S (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 47(29):5362–5365. doi:10.1002/anie.200800857

    CAS  Google Scholar 

  100. Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13(3):372–377. doi:10.1038/nm1486

    CAS  Google Scholar 

  101. Moore A, Medarova Z (2009) Imaging of siRNA delivery and silencing. Methods Mol Biol 487:93–110. doi:10.1007/978-1-60327-547-7_5

    CAS  Google Scholar 

  102. Yingyuad P, Mevel M, Prata C, Furegati S, Kontogiorgis C, Thanou M, Miller AD (2013) Enzyme-triggered PEGylated pDNA-nanoparticles for controlled release of pDNA in tumors. Bioconjug Chem 24(3):343–362. doi:10.1021/bc300419g

    CAS  Google Scholar 

  103. Kong G, Anyarambhatla G, Petros WP, Braun RD, Colvin OM, Needham D, Dewhirst MW (2000) Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res 60(24):6950–6957

    CAS  Google Scholar 

  104. Poon RT, Borys N (2009) Lyso-thermosensitive liposomal doxorubicin: a novel approach to enhance efficacy of thermal ablation of liver cancer. Expert Opin Pharmacother 10(2):333–343. doi:10.1517/14656560802677874

    CAS  Google Scholar 

  105. Needham D, Anyarambhatla G, Kong G, Dewhirst MW (2000) A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res 60(5):1197–1201

    CAS  Google Scholar 

  106. Needham D, Dewhirst MW (2001) The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev 53(3):285–305

    CAS  Google Scholar 

  107. Thomas MB, Jaffe D, Choti MM, Belghiti J, Curley S, Fong Y, Gores G, Kerlan R, Merle P, O’Neil B, Poon R, Schwartz L, Tepper J, Yao F, Haller D, Mooney M, Venook A (2010) Hepatocellular carcinoma: consensus recommendations of the National Cancer Institute Clinical Trials Planning Meeting. J Clin Oncol 28(25):3994–4005. doi:10.1200/JCO.2010.28.7805

    Google Scholar 

  108. Wood BJ, Poon RT, Locklin JK, Dreher MR, Ng KK, Eugeni M, Seidel G, Dromi S, Neeman Z, Kolf M, Black CD, Prabhakar R, Libutti SK (2012) Phase I study of heat-deployed liposomal doxorubicin during radiofrequency ablation for hepatic malignancies. J Vasc Interv Radiol 23(2):248–255 e247. S1051-0443(11)01427-8 [pii]. doi:10.1016/j.jvir.2011.10.018

  109. de Smet M, Langereis S, van den Bosch S, Grull H (2010) Temperature-sensitive liposomes for doxorubicin delivery under MRI guidance. J Control Release 143(1):120–127. doi:10.1016/j.jconrel.2009.12.002

    Google Scholar 

  110. Negussie AH, Yarmolenko PS, Partanen A, Ranjan A, Jacobs G, Woods D, Bryant H, Thomasson D, Dewhirst MW, Wood BJ, Dreher MR (2011) Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. Int J Hyperthermia 27(2):140–155. doi:10.3109/02656736.2010.528140

    CAS  Google Scholar 

  111. Ranjan A, Jacobs GC, Woods DL, Negussie AH, Partanen A, Yarmolenko PS, Gacchina CE, Sharma KV, Frenkel V, Wood BJ, Dreher MR (2012) Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J Control Release 158(3):487–494. doi:10.1016/j.jconrel.2011.12.011

    CAS  Google Scholar 

  112. Partanen A, Yarmolenko PS, Viitala A, Appanaboyina S, Haemmerich D, Ranjan A, Jacobs G, Woods D, Enholm J, Wood BJ, Dreher MR (2012) Mild hyperthermia with magnetic resonance-guided high-intensity focused ultrasound for applications in drug delivery. Int J Hyperthermia 28(4):320–336. doi:10.3109/02656736.2012.680173

    CAS  Google Scholar 

  113. Kamaly N, Miller AD (2010) Paramagnetic liposome nanoparticles for cellular and tumour imaging. Int J Mol Sci 11(4):1759–1776. doi:10.3390/ijms11041759

    CAS  Google Scholar 

  114. Kamaly N, Miller AD, Bell JD (2010) Chemistry of tumour targeted T1 based MRI contrast agents. Curr Top Med Chem 10(12):1158–1183, BSP/ CTMC /E-Pub/-0067-10-11 [pii]

    CAS  Google Scholar 

  115. Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16(10):1824–1832

    CAS  Google Scholar 

  116. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100(23):13549–13554. doi:10.1073/pnas.2232479100

    CAS  Google Scholar 

  117. Lassiter JB, Aizpurua J, Hernandez LI, Brandl DW, Romero I, Lal S, Hafner JH, Nordlander P, Halas NJ (2008) Close encounters between two nanoshells. Nano Lett 8(4):1212–1218. doi:10.1021/nl080271o

    CAS  Google Scholar 

  118. Leung K (2004) Iron oxide-ferritin nanocages. doi:NBK61993 [bookaccession]

    Google Scholar 

  119. von Maltzahn G, Park JH, Agrawal A, Bandaru NK, Das SK, Sailor MJ, Bhatia SN (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69(9):3892–3900. doi:10.1158/0008-5472.CAN-08-4242

    Google Scholar 

  120. Bardhan R, Chen W, Bartels M, Perez-Torres C, Botero MF, McAninch RW, Contreras A, Schiff R, Pautler RG, Halas NJ, Joshi A (2010) Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo. Nano Lett. doi:10.1021/nl102889y

    Google Scholar 

  121. Bardhan R, Lal S, Joshi A, Halas NJ (2011) Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 44(10):936–946. doi:10.1021/ar200023x

    CAS  Google Scholar 

  122. Ye L, Yong KT, Liu L, Roy I, Hu R, Zhu J, Cai H, Law WC, Liu J, Wang K, Liu J, Liu Y, Hu Y, Zhang X, Swihart MT, Prasad PN (2012) A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat Nanotechnol 7(7):453–458. doi:10.1038/nnano.2012.74

    CAS  Google Scholar 

  123. Chen J, Lanza GM, Wickline SA (2010) Quantitative magnetic resonance fluorine imaging: today and tomorrow. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(4):431–440. doi:10.1002/wnan.87

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thanou, M., Miller, A.D. (2014). Nanomedicine in Cancer Diagnosis and Therapy: Converging Medical Technologies Impacting Healthcare. In: Ge, Y., Li, S., Wang, S., Moore, R. (eds) Nanomedicine. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2140-5_18

Download citation

Publish with us

Policies and ethics