Skip to main content

Delivering on Promises? The Impact of Kinetoplastid Genomics on Sleeping Sickness, Chagas Disease and Leishmaniasis

  • Chapter
  • First Online:
Genomics Applications for the Developing World

Part of the book series: Advances in Microbial Ecology ((AMIE))

  • 1021 Accesses

Abstract

Species of the genera Trypanosoma and Leishmania are protozoan parasites responsible for a series of neglected tropical diseases. The people most affected by these parasites are the poorest living in tropical and subtropical regions of the world. Two subspecies of Trypanosoma brucei, T. b. gambiense and T. b. rhodesiense, are the causative agents of human African trypanosomiasis or sleeping sickness. Millions of people living in 36 sub-Saharan countries are at risk of acquiring the disease.(WHO 2010a) Due to increased control over the last decade, the number of reported cases has declined to under 10,000 in 2009 for the first time in 50 years (WHO 2010a). For chemotherapy, only four drugs (suramin, pentamidine, melarsoprol and eflornithine), of which three were developed >60 years ago, and one drug combination therapy (eflornithine/nifurtimox) are available (WHO 2010a; Steverding 2010). In addition, all drugs have major drawbacks including poor efficacy, significant toxicity, need for parental administration and drug resistance (Fairlamb 2003; Matovu et al. 2001; Delespaux and de Koning 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida R, Norrish A, Levick M et al (2002) From genomes to vaccines: Leishmania as a model. Philos Trans R Soc Lond B Biol Sci 357:5–11

    Article  PubMed  CAS  Google Scholar 

  • Alves-Ferreira M, Guimarães AC, Capriles PV et al (2009) A new approach for potential drug target discovery through in silico metabolic pathway analysis using Trypanosoma cruzi genome information. Mem Inst Oswaldo Cruz 104:1100–1110

    Article  PubMed  CAS  Google Scholar 

  • Aurrecoechea C, Brestelli J, Brunk BP et al (2010) EuPathDB: a portal to eukaryotic pathogen databases. Nucleic Acids Res 38:D415–D419

    Article  PubMed  CAS  Google Scholar 

  • Berg M, Van der Veken P, Goeminne A et al (2010) Inhibitors of the purine salvage pathway: a valuable approach for antiprotozoal chemotherapy? Curr Med Chem 17:2456–2481

    Article  PubMed  CAS  Google Scholar 

  • Berriman M, Ghedin E, Hertz-Fowler C et al (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya T, Brooks J, Yeo M et al (2010) Analysis of molecular diversity of the Trypanosoma cruzi tryptomastigote small surface antigen reveals novel epitopes, evidence of positive selection and potential implications for lineage-specific serology. Int J Parasitol 40:921–928

    Article  PubMed  CAS  Google Scholar 

  • Butler D (2005) Triple genome triumph. Nature 436:337

    Article  PubMed  CAS  Google Scholar 

  • Camizotti LA, Yamashiro-Kanashiro EH, Cotrim PC (2009) Identification and chromosomal localization of one locus of Leishmania (L.) major related with resistance to itraconazole. Parasitol Res 105:471–478

    Article  PubMed  CAS  Google Scholar 

  • Capriles PV, Guimarãres AC, Otto TD et al (2010) Structural modelling and comparative analysis of homologous, analogous and specific proteins from Trypanosoma cruzi versus Homo sapiens: putative drug targets for chagas’ disease treatment. BMC Genomics 11:610

    Article  PubMed  Google Scholar 

  • Chukualim B, Peters N, Hertz Folwer C et al (2008) TrypanoCyc – a metabolic pathway database for Trypanosoma brucei. BMC Bioinformatics 9(Suppl 10):P5

    Article  Google Scholar 

  • Croft SL, Coombs GH (2003) Leishmaniasis – current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 19:502–508

    Article  PubMed  CAS  Google Scholar 

  • Cuervo P, Domont GB, De Jesus JB (2010) Proteomics of trypanosomatids of human medical importance. J Proteomics 73:845–867

    Article  PubMed  CAS  Google Scholar 

  • Delespaux V, de Koning HP (2007) Drugs and drug resistance in African trypanosomiasis. Drug Resist Updat 10:30–50

    Article  PubMed  CAS  Google Scholar 

  • Doyle MA, MacRae JI, De Souza DP et al (2009) LeishCyc: a biochemical pathway database for Leishmania major. BMC Syst Biol 3:57

    Article  PubMed  Google Scholar 

  • Dumonteil E, Escobedo-Ortegon J, Reyes-Rodriguez N et al (2004) Immunotherapy of Trypanosoma cruzi infection with DNA vaccines in mice. Infect Immun 72:46–53

    Article  PubMed  CAS  Google Scholar 

  • el Kouni MH (2003) Potential chemotherapeutic targets in the purine metabolism of parasites. Pharmacol Ther 99:283–309

    Article  PubMed  Google Scholar 

  • El-Sayed NM, Myler PJ, Bartholomeu DC et al (2005) The genome sequence of Trypanosoma cruzi, ethiologic agent of Chagas disease. Science 309:409–415

    Article  PubMed  CAS  Google Scholar 

  • Fairlamb AH (2003) Chemotherapy of human African trypanosomiasis: current and future prospects. Trends Parasitol 19:488–494

    Article  PubMed  CAS  Google Scholar 

  • Foti L, Fonseca Bde P, Nascimento LD et al (2009) Viability study of a multiplex diagnostic platform for Chagas disease. Mem Inst Oswaldo Cruz 104(Supp 1):136–141

    Article  PubMed  CAS  Google Scholar 

  • Franzén O, Ochaya S, Sherwood E et al (2011) Shotgun sequencing analysis of Trypanosoma cruzi I Sylvio X10/1 and comparison with T. cruzi VI CL Brener. PLoS Negl Trop Dis 5:e984

    Article  PubMed  Google Scholar 

  • Grisard EC, Stoco PH, Wagner G et al (2010) Transcriptomic analyses of the avirulent protozoan parasite Trypanosoma rangeli. Mol Biochem Parasitol 174:18–25

    Article  PubMed  CAS  Google Scholar 

  • Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 18:927–974

    Article  PubMed  CAS  Google Scholar 

  • Haddad D, Bilcikova E, Witney AA et al (2004) Novel antigen identification method for discovery of protective malaria antigens by rapid testing of DNA vaccines encoding exons from the parasite genome. Infect Immun 72:1594–1602

    Article  PubMed  CAS  Google Scholar 

  • Horn D, McCulloch R (2010) Molecular mechanisms underlying the control of antigenic variation in African trypanosomes. Curr Opin Microbiol 13:700–705

    Article  PubMed  CAS  Google Scholar 

  • Ivens AC, Peacock CS, Worthey EA et al (2005) The genome of kinetoplastid parasite, Leishmania major. Science 309:436–442

    Article  PubMed  Google Scholar 

  • Jackson AP, Sanders M, Berry A et al (2010) The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic human African trypanosomiasis. PLoS Negl Trop Dis 4:e658

    Article  PubMed  Google Scholar 

  • Johnston DA, Blaxter ML, Degrave WM et al (1999) Genomics and the biology of parasites. Bioassays 21:131–147

    Article  CAS  Google Scholar 

  • Kuboki N, Inoue N, Sakurai T et al (2003) Loop-mediated isothermal amplification for detection of African trypanosomes. J Clin Microbiol 41:5517–5524

    Article  PubMed  CAS  Google Scholar 

  • Legrand N, Ploss A, Balling R et al (2009) Humanized mice for modelling human infectious disease: challenges, progress, and outlook. Cell Host Microbe 6:5–9

    Article  PubMed  CAS  Google Scholar 

  • Machado FS, Tyler KM, Brant F et al (2012) Pathogenesis of Chagas disease: time to move on. Front Biosci (Elite Ed) 4:1743–1758

    Google Scholar 

  • Magez S, Caljon G, Tran T et al (2010) Current status of vaccination against African trypanosomiasis. Parasitology 137:2017–2027

    Article  PubMed  Google Scholar 

  • Matovu E, Seebeck T, Enyaru JC et al (2001) Drug resistance in Trypanosoma brucei spp., the causative agents of sleeping sickness in man and nagana in cattle. Microbes Infect 3:763–770

    Article  PubMed  CAS  Google Scholar 

  • Myler PJ (2008) Searching the Tritryp genomes for drug targets. Adv Exp Med Biol 625:133–140

    Article  PubMed  CAS  Google Scholar 

  • Ndao M (2009) Diagnosis of parasitic diseases: old and new approaches. Interdiscip Perspect Infect Dis 2009:278246

    Article  Google Scholar 

  • Ndao M, Spithill TW, Caffrey R et al (2010) Identification of novel diagnostic serum biomarkers for Chagas’ disease in asymptomatic subjects by mass spectrometric profiling. J Clin Microbiol 48:1139–1149

    Article  PubMed  CAS  Google Scholar 

  • Njiru ZK, Mikosza AS, Matovu E et al (2008) African trypanosomiasis: sensitive and rapid detection of the sub-genus Trypanozoon by loop-mediated isothermal amplification (LAMP) of parasite DNA. Int J Parasitol 38:589–599

    Article  PubMed  CAS  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63

    Article  PubMed  CAS  Google Scholar 

  • Pajot A, Michel ML, Mancini-Bourgine M et al (2006) Identification of novel HLA-DR1-restricted epitopes from the hepatitis B virus envelope protein in mice expressing HLA-DR1 and vaccinated human subjects. Microbes Infect 8:2783–2790

    Article  PubMed  CAS  Google Scholar 

  • Peacock CS, Seeger K, Harris D et al (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39:839–847

    Article  PubMed  CAS  Google Scholar 

  • Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820

    Article  PubMed  CAS  Google Scholar 

  • Rappuoli R (2000) Reverse vaccinology. Curr Opin Microbiol 3:445–450

    Article  PubMed  CAS  Google Scholar 

  • Schroeder J, Aebischer T (2011) Vaccines for leishmaniasis: from proteome to vaccine candidates. Hum Vaccin 7:10–15

    Article  PubMed  Google Scholar 

  • Sette A, Rappuoli R (2010) Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33:530–541

    Article  PubMed  CAS  Google Scholar 

  • Steverding D (2010) The development of drugs for treatment of sleeping sickness: a historical review. Parasit Vectors 3:15

    Article  PubMed  Google Scholar 

  • Stober CB, Lange UG, Roberts MT et al (2006) From genome to vaccines for leishmaniasis: screening 100 novel vaccine candidates against murine Leishmania major infection. Vaccine 24:2602–2616

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam C, Veazey P, Redmond S et al (2006) Chromosome-wide analysis of gene function by RNA interference in the African trypanosome. Eukaryot Cell 5:1539–1549

    Article  PubMed  CAS  Google Scholar 

  • Urbina JA, Docampo R (2003) Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol 19:495–501

    Article  PubMed  CAS  Google Scholar 

  • Velez ID, Gilchrist K, Martínez S et al (2009) Safety and immunogenicity of a defined vaccine for the prevention of cutaneous leishmaniasis. Vaccine 28:329–337

    Article  PubMed  CAS  Google Scholar 

  • WHO (2004) Workplan of the working group on applied genomics for drugs and diagnostics; http://www.who.int/tdrold/grants/workplans/genomics.htm

  • WHO (2010a) African trypanosomiasis (sleeping sickness). World Health Org Fact Sheet 259: http://www.who.int/mediacentre/factsheets/fs259/en/

  • WHO (2010b) Chagas disease (American trypanosomiasis). World Health Org Fact Sheet 340: http://www.who.int/mediacentre/factsheets/fs340/en/index.html

  • WHO (2010c) Leishmaniasis. World Health Org Tech Inform; http://www.who.int/leishmaniasis/en/index.html

  • Yajima M, Imadome K, Nakagawa A et al (2009) T cell-mediated control of Epstein-Barr virus infection in humanized mice. J Infect Dis 200:1611–1615

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Steverding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Steverding, D., Tyler, K.M., Grisard, E.C. (2012). Delivering on Promises? The Impact of Kinetoplastid Genomics on Sleeping Sickness, Chagas Disease and Leishmaniasis. In: Nelson, K., Jones-Nelson, B. (eds) Genomics Applications for the Developing World. Advances in Microbial Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2182-5_9

Download citation

Publish with us

Policies and ethics