Skip to main content

Exogenous Cell Myelin Repair and Neuroprotection in Multiple Sclerosis

  • Chapter
  • First Online:
Myelin Repair and Neuroprotection in Multiple Sclerosis

Abstract

The loss of myelin has serious functional consequences in multiple sclerosis (MS) and other demyelinating disorders and may place demyelinated axons at risk of subsequent degeneration. Hence, remyelination has two major consequences: it will restore and speed impulse conduction (Smith et al. 1979) and it may protect axons against degeneration, thus acting as a form of neuroprotection (Irvine and Blakemore 2008; Kornek et al. 2000). The current available treatments of MS do not promote remyelination as far as is known; hence there is a critical need for such a restorative therapy. It is well known that in experimental demyelinating disease, the CNS has remarkable ability to be remyelinated by an endogenous response (Blakemore 1973; Franklin and Ffrench-Constant 2008; Ludwin 1978), and recently, it was clearly demonstrated that widespread endogenous remyelination can lead to restoration of function (Duncan et al. 2009). Likewise in MS, extensive remyelination occurs early in the disease (Kornek et al. 2000; Prineas and Connell 1979; Raine and Wu 1993) and can also be seen at later stages (Patani et al. 2007; Patrikios et al. 2006) although it is not clear how long the human CNS can sustain an endogenous response. However it is likely that the aging CNS remyelinates less efficiently (Goldschmidt et al. 2009; Shen et al. 2008; Shields et al. 1999). In later stages of the disease, endogenous remyelination will only occur if the remaining cells of the oligodendrocyte lineage, either progenitors or mature cells, in or very close to lesions, can be mobilized and differentiate into myelinating oligodendrocytes. As there are no proven strategies available that will promote such a response in the human CNS, the transplantation of cells into focal areas of demyelination or multiple sites using a more disseminated delivery approach may be important therapeutically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ader M, Meng J, Schachner M, Bartsch U (2000) Formation of myelin after transplantation of neural precursor cells into the retina of young postnatal mice. Glia 30(3):301–310

    PubMed  CAS  Google Scholar 

  • Aharonowiz M, Einstein O, Fainstein N, Lassmann H, Reubinoff B, Ben-Hur T (2008) Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS One 3:e3145

    PubMed  Google Scholar 

  • Amabile G, Meissner A (2009) Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med 15:59–68

    PubMed  CAS  Google Scholar 

  • Archer DR, Leven S, Duncan ID (1994) Myelination by cryopreserved xenografts and allografts in the myelin-deficient rat. Exp Neurol 125:268–277

    PubMed  CAS  Google Scholar 

  • Archer DR, Cuddon PA, Lipsitz D, Duncan ID (1997) Myelination of the canine central nervous system by glial cell transplantation: a model for repair of human myelin disease. Nat Med 3:54–59

    PubMed  CAS  Google Scholar 

  • Arnett HA, Wang Y, Matsushima GK, Suzuki K, Ting JPY (2003) Functional genomic analysis of remyelination reveals importance of inflammation in oligodendrocyte regeneration. J Neurosci 23:9824–9832

    PubMed  CAS  Google Scholar 

  • Avellana-Adalid V, Nait-Oumesmar B, Lachapelle F, Baron-Van Evercooren A (1996) Expansion of rat oligodendrocyte progenitors into proliferative “oligospheres” that retain differentiation potential. J Neurosci Res 45:558–570

    PubMed  CAS  Google Scholar 

  • Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, Luo NL, Banine F, Liu Y, Chang A, Trapp BD, Bebo BF Jr, Rao MS, Sherman LS (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11:966–972

    PubMed  CAS  Google Scholar 

  • Banati RB (2002) Visualising microglial activation in vivo. Glia 40:206–217

    PubMed  Google Scholar 

  • Barkhof F, Calabresi PA, Miller DH, Reingold SC (2009) Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol 5:256–266

    PubMed  Google Scholar 

  • Barnett SC, Franklin RJM, Blakemore WF (1993) In vitro and in vivo analysis of a rat bipotential O-2A progenitor cell line containing the temperature-sensitive mutant gene of the SV40 large T antigen. Eur J Neurosci 5:1247–1260

    PubMed  CAS  Google Scholar 

  • Ben Hur T, van Heeswijk RB, Einstein O, Aharonowiz M, Xue R, Frost EE, Mori S, Reubinoff BE, Bulte JW (2007) Serial in vivo MR tracking of magnetically labeled neural spheres transplanted in chronic EAE mice. Magn Reson Med 57:164–171

    PubMed  Google Scholar 

  • Björklund A, Lindvall O (2000) Cell replacement therapies for central nervous system disorders. Nat Neurosci 3:537–544

    PubMed  Google Scholar 

  • Blakemore WF (1973) Remyelination of the superior cerebellar peduncle in the mouse following demyelination induced by feeding cuprizone. J Neurol Sci 20:73–83

    PubMed  CAS  Google Scholar 

  • Blakemore WF (1977) Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature 266:68–69

    PubMed  CAS  Google Scholar 

  • Blakemore WF, Franklin RJM (1991) Transplantation of glial cells into the CNS. Trends Neurosci 14:323–327

    PubMed  CAS  Google Scholar 

  • Blakemore WF, Franklin RJ (2000) Transplantation options for therapeutic central nervous system remyelination. Cell Transplant 9:289–294

    PubMed  CAS  Google Scholar 

  • Blakemore WF, Patterson RC (1978) Suppression of remyelination in the CNS by X-irradiation. Acta Neuropathol 42:105–113

    PubMed  CAS  Google Scholar 

  • Blakemore WF, Crang AJ, Franklin RJM (1995a) Transplantation of glial cells. In: Ransom BR, Kettenmann H (eds) Neuroglial cells. Oxford University Press, Cambridge, pp 869–882

    Google Scholar 

  • Blakemore WF, Crang AJ, Franklin RJM, Tang K, Ryder S (1995b) Glial cell transplants that are subsequently rejected can be used to influence regeneration of glial cell environments in the CNS. Glia 13:79–91

    PubMed  CAS  Google Scholar 

  • Blakemore WF, Gilson JM, Crang AJ (2000) Transplanted glial cells migrate over a greater distance and remyelinate demyelinated lesions more rapidly than endogenous remyelinating cells. J Neurosci Res 61:288–294

    PubMed  CAS  Google Scholar 

  • Blakemore WF, Gilson JM, Crang AJ (2003) The presence of astrocytes in areas of demyelination influences remyelination following transplantation of oligodendrocyte progenitors. Exp Neurol 184:955–963

    PubMed  Google Scholar 

  • Brüstle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RDG (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285:754–756

    PubMed  Google Scholar 

  • Buchet D, Baron-Van Evercooren A (2009) In search of human oligodendroglia for myelin repair. Neurosci Lett 456:112–119

    PubMed  CAS  Google Scholar 

  • Buchet D, Garcia C, Deboux C, Nait-Oumesmar B, Baron-Van Evercooren A (2011) Human neural progenitors from different foetal forebrain regions remyelinate the adult mouse spinal cord. Brain 134:1168–1183

    PubMed  Google Scholar 

  • Bulte JWM, Zhang SC, van Gelderen P, Herynek V, Jordan EK, Duncan ID, Frank JA (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 96:15256–15261

    PubMed  CAS  Google Scholar 

  • Bulte JWM, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147

    PubMed  CAS  Google Scholar 

  • Cao Q, Xu XM, DeVries WH, Enzmann GU, Ping P, Tsoulfas P, Wood PM, Bunge MB, Whittemore SR (2005) Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci 25:6947–6957

    PubMed  CAS  Google Scholar 

  • Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346:165–173

    PubMed  Google Scholar 

  • Charles P, Reynolds R, Seilhean D, Rougon G, Aigrot MS, Niezgoda A, Zalc B, Lubetzki C (2002) Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain 125:1972–1979

    PubMed  Google Scholar 

  • Comi G (2008) Is it clinically relevant to repair focal multiple sclerosis lesions? J Neurol Sci 265:17–20

    PubMed  CAS  Google Scholar 

  • Compston A (1997) Remyelination in multiple sclerosis: a challenge for therapy. The 1996 European Charcot Foundation Lecture. Mult Scler 3:51–70

    PubMed  CAS  Google Scholar 

  • Crang AT, Gilson J, Blakemore WF (1998) The demonstration by transplantation of the very restricted remyelinating potential of post-mitotic oligodendrocytes. J Neurocytol 27:541–553

    PubMed  CAS  Google Scholar 

  • Czepiel M, Balasubramaniyan V, Schaafsma W, Stancic M, Mikkers H, Huisman C, Boddeke E, Copray S (2011) Differentiation of induced pluripotent stem cells into functional oligodendrocytes. Glia 59:882–892

    PubMed  Google Scholar 

  • De Castro F, Bribián A (2005) The molecular orchestra of the migration of oligodendrocyte precursors during development. Brain Res Rev 49:227–241

    PubMed  Google Scholar 

  • Decker L, Avellana-Adalid V, Nait-Oumesmar B, Durbec P, Baron-Van Evercooren A (2000) Oligodendrocyte precursor migration and differentiation: combined effects of PSA residues, growth factors, and substrates. Mol Cell Neurosci 16:422–439

    PubMed  CAS  Google Scholar 

  • Du ZW, Li XJ, Nguyen GD, Zhang SC (2006) Induced expression of Olig2 is sufficient for oligodendrocyte specification but not for motoneuron specification and astrocyte repression. Mol Cell Neurosci 33:371–380

    PubMed  CAS  Google Scholar 

  • Dubois-Dalcq M, Ffrench-Constant C, Franklin RJ (2005) Enhancing central nervous system remyelination in multiple sclerosis. Neuron 48:9–12

    PubMed  CAS  Google Scholar 

  • Duncan ID (1995) Inherited disorders of myelination of the central nervous system. In: Ransom BR, Kettenmann HR (eds) Neuroglial cells. Oxford University Press, Cambridge, pp 990–1009

    Google Scholar 

  • Duncan ID (1996) Glial cell transplantation and remyelination of the CNS. Neuropathol Appl Neurobiol 22:87–100

    PubMed  CAS  Google Scholar 

  • Duncan ID (2008) Replacing cells in multiple sclerosis. J Neurol Sci 265:89–92

    PubMed  CAS  Google Scholar 

  • Duncan ID, Milward EA (1995) Glial cell transplants: experimental therapies of myelin diseases. Brain Pathol 5:301–310

    PubMed  CAS  Google Scholar 

  • Duncan ID, Aguayo AJ, Bunge RP, Wood PM (1981) Transplantation of rat Schwann cells grown in tissue culture into the mouse spinal cord. J Neurol Sci 49:241–252

    PubMed  CAS  Google Scholar 

  • Duncan ID, Hammang JP, Jackson KF, Wood PM, Bunge RP, Langford LA (1988) Transplantation of oligodendrocytes and Schwann cells into the spinal cord of the myelin-deficient rat. J Neurocytol 17:351–360

    PubMed  CAS  Google Scholar 

  • Duncan ID, Paino C, Archer DR, Wood PM (1992) Functional capacities of transplanted cell-sorted adult oligodendrocytes. Dev Neurosci 14:114–122

    PubMed  CAS  Google Scholar 

  • Duncan ID, Grever WE, Zhang SC (1997) Repair of myelin disease: strategies and progress in animal models. Mol Med Today 3:554–561

    PubMed  CAS  Google Scholar 

  • Duncan ID, Goldman S, Macklin WB, Rao M, Weiner LP, Reingold SC (2008) Stem cell therapy in multiple sclerosis: promise and controversy. Mult Scler 14:541–546

    PubMed  CAS  Google Scholar 

  • Duncan ID, Brower A, Kondo Y, Curlee JF Jr, Schultz RD (2009) Extensive remyelination of the CNS leads to functional recovery. Proc Natl Acad Sci USA 106:6832–6836

    PubMed  CAS  Google Scholar 

  • Dunning MD, Lakatos A, Loizou L, Kettunen M, Ffrench-Constant C, Brindle KM, Franklin RJ (2004) Superparamagnetic iron oxide-labeled Schwann cells and olfactory ensheathing cells can be traced in vivo by magnetic resonance imaging and retain functional properties after transplantation into the CNS. J Neurosci 24:9799–9810

    PubMed  CAS  Google Scholar 

  • Eftekharpour E, Karimi-Abdolrezaee S, Wang J, El Beheiry H, Morshead C, Fehlings MG (2007) Myelination of congenitally dysmyelinated spinal cord axons by adult neural precursor cells results in formation of nodes of Ranvier and improved axonal conduction. J Neurosci 27:3416–3428

    PubMed  CAS  Google Scholar 

  • Einstein O, Karussis D, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Abramsky O, Ben-Hur T (2003) Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol Cell Neurosci 27:1074–1082

    Google Scholar 

  • Einstein O, Fainstein N, Vaknin I, Mizrachi-Kol R, Reihartz E, Grigoriadis N, Lavon I, Baniyash M, Lassmann H, Ben Hur T (2006a) Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann Neurol 61:209–218

    Google Scholar 

  • Einstein O, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Polyzoidou E, Lavon I, Milonas I, Karussis D, Abramsky O, Ben-Hur T (2006b) Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental autoimmune encephalomyelitis. Exp Neurol 198:275–284

    PubMed  CAS  Google Scholar 

  • Einstein O, Menachem-Tzidon O, Mizrachi-Kol R, Reinhartz E, Grigoriadis N, Ben Hur T (2006c) Survival of neural precursor cells in growth factor-poor environment: implications for transplantation in chronic disease. Glia 53:449–455

    PubMed  Google Scholar 

  • Einstein O, Friedman-Levi Y, Grigoriadis N, Ben-Hur T (2009) Transplanted neural precursors enhance host brain-derived myelin regeneration. J Neurosci 29:15694–15702

    PubMed  CAS  Google Scholar 

  • Erceg S, Ronaghi M, Oria M, Rosello MG, Arago MA, Lopez MG, Radojevic I, Moreno-Manzano V, Rodriguez-Jimenez FJ, Bhattacharya SS, Cordoba J, Stojkovic M (2010) Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells 28:1541–1549

    PubMed  Google Scholar 

  • Erlandsson A, Lin CH, Yu F, Morshead CM (2011) Immunosuppression promotes endogenous neural stem and progenitor cell migration and tissue regeneration after ischemic injury. Exp Neurol 230:48–57

    PubMed  CAS  Google Scholar 

  • Fancy SP, Chan JR, Baranzini SE, Franklin RJ, Rowitch DH (2011) Myelin regeneration: a recapitulation of development? Annu Rev Neurosci 34:21–43

    PubMed  CAS  Google Scholar 

  • Foote AK, Blakemore WF (2005) Inflammation stimulates remyelination in areas of chronic demyelination. Brain 128:528–539

    PubMed  CAS  Google Scholar 

  • Franceschini I, Vitry S, Padilla F, Casanova P, Tham TN, Fukuda M, Rougon G, Durbec P, Dubois-Dalcq M (2004) Migrating and myelinating potential of neural precursors engineered to overexpress PSA-NCAM. Mol Cell Neurosci 27:151–162

    PubMed  CAS  Google Scholar 

  • Franklin RJM (1993) Reconstructing myelin-deficient environments in the CNS by glial cell transplantation. Neurosciences 5:443–452

    Google Scholar 

  • Franklin RJM, Blakemore WF (1997) Transplanting oligodendrocyte progenitors into the adult CNS. J Anat 190:23–33

    PubMed  Google Scholar 

  • Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9:839–855

    PubMed  CAS  Google Scholar 

  • Franklin RJM, Crang AJ, Blakemore WF (1991) Transplanted type-1 astrocytes facilitate repair of demyelinating lesions by host oligodendrocytes in adult rat spinal cord. J Neurocytol 20:420–430

    PubMed  CAS  Google Scholar 

  • Franklin RJM, Bayley SA, Milner R, Ffrench-Constant C, Blakemore WF (1995) Differentiation of the O-2A progenitor cell line CG-4 into oligodendrocytes and astrocytes following transplantation into glia-deficient areas of CNS white matter. Glia 13:39–44

    PubMed  CAS  Google Scholar 

  • Franklin RJM, Bayley SA, Blakemore WF (1996) Transplanted CG4 cells (an oligodendrocyte progenitor cell line) survive, migrate, and contribute to repair of areas of demyelination in X-irradiated and damaged spinal cord but not in normal spinal cord. Exp Neurol 137:263–276

    PubMed  CAS  Google Scholar 

  • Gansmuller A, Lachapelle F, Baron-Van Evercooren A, Hauw JJ, Baumann N, Gumpel M (1986) Transplantations of newborn CNS fragments into the brain of shiverer mutant mice: extensive myelination by transplanted oligodendrocytes. Dev Neurosci 8:197–207

    PubMed  CAS  Google Scholar 

  • Goldman S (2005) Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 23:862–871

    PubMed  CAS  Google Scholar 

  • Goldschmidt T, Antel J, Konig FB, Brück W, Kuhlmann T (2009) Remyelination capacity of the MS brain decreases with disease chronicity. Neurology 72:1914–1921

    PubMed  CAS  Google Scholar 

  • Gout O, Gansmüller A, Gumpel M (1990) Remyelination of a chemically induced demyelinated lesion in the spinal cord of the adult shiverer mouse by transplanted oligodendrocytes. In: Jeserich G, Althaus HH, Waehneldt TV (eds) Cellular and molecular biology of myelination, vol 43. Springer, Berlin, pp 185–198

    Google Scholar 

  • Griffiths IR (1996) Myelin mutants: model systems for the study of normal and abnormal myelination. Bioessays 18:789–797

    PubMed  CAS  Google Scholar 

  • Groves AK, Barnett SC, Franklin RJM, Crang AJ, Mayer M, Blakemore WF, Noble M (1993) Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature 362:453–455

    PubMed  CAS  Google Scholar 

  • Gumpel M, Baumann N, Raoul M, Jacque C (1983) Survival and differentiation of oligodendrocytes from neural tissue transplanted into new-born mouse brain. Neurosci Lett 37:307–311

    PubMed  CAS  Google Scholar 

  • Gumpel M, Lachapelle F, Baumann N (1985) Central nervous tissue transplantation into mouse brain: differentiation of myelin from transplanted oligodendrocytes. In: Björklund A, Stenevi U (eds) Neural grafting in the mammalian CNS. Elsevier, Amsterdam, pp 151–158

    Google Scholar 

  • Gumpel M, Lachapelle F, Gansmüller A, Baulac M, Baron-Van Evercooren A, Baumann N (1987) Transplantation of human embryonic oligodendrocytes into shiverer brain. Ann NY Acad Sci 495:71–85

    PubMed  CAS  Google Scholar 

  • Hammang JP, Archer DR, Duncan ID (1997) Myelination following transplantation of EGF-responsive neural stem cells into a myelin-deficient environment. Exp Neurol 147:84–95

    PubMed  CAS  Google Scholar 

  • Hardison JL, Nistor G, Gonzalez R, Keirstead HS, Lane TE (2006) Transplantation of glial-committed progenitor cells into a viral model of multiple sclerosis induces remyelination in the absence of an attenuated inflammatory response. Exp Neurol 197:420–429

    PubMed  CAS  Google Scholar 

  • Hatch MN, Schaumburg CS, Lane TE, Keirstead HS (2009) Endogenous remyelination is induced by transplant rejection in a viral model of multiple sclerosis. J Neuroimmunol 212:74–81

    PubMed  CAS  Google Scholar 

  • Hohlfeld R (2007) Does inflammation stimulate remyelination? J Neurol 254(Suppl 1):I-47–I-54

    Google Scholar 

  • Hu BY, Du ZW, Zhang SC (2009) Differentiation of human oligodendrocytes from pluripotent stem cells. Nat Protoc 4:1614–1622

    PubMed  CAS  Google Scholar 

  • Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA 107:4335–4340

    PubMed  CAS  Google Scholar 

  • Hunt J, Cheng A, Hoyles A, Jervis E, Morshead CM (2010) Cyclosporin A has direct effects on adult neural precursor cells. J Neurosci 30:2888–2896

    PubMed  CAS  Google Scholar 

  • Ikuta F, Zimmerman HM (1976) Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology 26:26–28

    PubMed  CAS  Google Scholar 

  • Irvine KA, Blakemore WF (2008) Remyelination protects axons from demyelination-associated axon degeneration. Brain 131:1464–1477

    PubMed  CAS  Google Scholar 

  • Izrael M, Zhang PL, Kaufman R, Shinder V, Ella R, Amit M, Itskovitz-Eldor J, Chebath J, Revel M (2007) Human oligodendrocytes derived from embryonic stem cells: effect of noggin on phenotypic differentiation in vitro and on myelination in vivo. Mol Cell Neurosci 34:310–323

    PubMed  CAS  Google Scholar 

  • Jarjour AA, Kennedy TE (2004) Oligodendrocyte precursors on the move: mechanisms directing migration. Neuroscientist 10:99–105

    PubMed  Google Scholar 

  • Jeffery ND, Crang AJ, O’Leary MT, Hodge SJ, Blakemore WF (1999) Behavioural consequences of oligodendrocyte progenitor cell transplantation into experimental demyelinating lesions in the rat spinal cord. Eur J Neurosci 11:1508–1514

    PubMed  CAS  Google Scholar 

  • Joannides AJ, Fiore-Heriche C, Battersby AA, Athauda-Arachchi P, Bouhon IA, Williams L, Westmore K, Kemp PJ, Compston A, Allen ND, Chandran S (2007) A scaleable and defined system for generating neural stem cells from human embryonic stem cells. Stem Cells 25:731–737

    PubMed  CAS  Google Scholar 

  • Kang SM, Cho MS, Seo H, Yoon CJ, Oh SK, Choi YM, Kim DW (2007) Efficient induction of oligodendrocytes from human embryonic stem cells. Stem Cells 25:419–424

    PubMed  CAS  Google Scholar 

  • Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG (2006) Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 26:3377–3389

    PubMed  CAS  Google Scholar 

  • Keirstead HS (2005) Stem cells for the treatment of myelin loss. Trends Neurosci 28:677–683

    PubMed  CAS  Google Scholar 

  • Keirstead HS, Levine JM, Blakemore WF (1998) Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia 22:161–170

    PubMed  CAS  Google Scholar 

  • Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25:4694–4705

    PubMed  CAS  Google Scholar 

  • Kerschensteiner M, Stadelmann C, Buddeberg BS, Merkler D, Bareyre FM, Anthony DC, Linington C, Brück W, Schwab ME (2004) Targeting experimental autoimmune encephalomyelitis lesions to a predetermined axonal tract system allows for refined behavioral testing in an animal model of multiple sclerosis. Am J Pathol 164:1455–1469

    PubMed  Google Scholar 

  • Kerstetter AE, Padovani-Claudio DA, Bai L, Miller RH (2009) Inhibition of CXCR2 signaling promotes recovery in models of multiple sclerosis. Exp Neurol 220:44–56

    PubMed  CAS  Google Scholar 

  • Kidd D, Thorpe JW, Thompson AJ, Kendall BE, Moseley IF, MacManus DG, McDonald WI, Miller DH (1993) Spinal cord MRI using multi-array coils and fast spin echo II: findings in multiple sclerosis. Neurology 43:2632–2637

    PubMed  CAS  Google Scholar 

  • Kiskinis E, Eggan K (2010) Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest 120:51–59

    PubMed  CAS  Google Scholar 

  • Koch P, Kokaia Z, Lindvall O, Brustle O (2009) Emerging concepts in neural stem cell research: autologous repair and cell-based disease modelling. Lancet Neurol 8:819–829

    PubMed  Google Scholar 

  • Kondo Y, Wenger DA, Gallo V, Duncan ID (2005) Galactocerebrosidase-deficient oligodendrocytes maintain stable central myelin by exogenous replacement of the missing enzyme in mice. Proc Natl Acad Sci USA 102:18670–18675

    PubMed  CAS  Google Scholar 

  • Kondo Y, Adams JM, Vanier MT, Duncan ID (2011) Macrophages counteract demyelination in a mouse model of globoid cell leukodystrophy. J Neurosci 31:3610–3624

    PubMed  CAS  Google Scholar 

  • Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, Linington C, Schmidbauer M, Lassmann H (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157:267–276

    PubMed  CAS  Google Scholar 

  • Kremer D, Aktas O, Hartung HP, Kury P (2011) The complex world of oligodendroglial differentiation inhibitors. Ann Neurol 69:602–618

    PubMed  CAS  Google Scholar 

  • Kumagai G, Okada Y, Yamane J, Nagoshi N, Kitamura K, Mukaino M, Tsuji O, Fujiyoshi K, Katoh H, Okada S, Shibata S, Matsuzaki Y, Toh S, Toyama Y, Nakamura M, Okano H (2009) Roles of ES cell-derived gliogenic neural stem/progenitor cells in functional recovery after spinal cord injury. PLoS One 4:e7706

    PubMed  Google Scholar 

  • Lachapelle F, Gumpel M, Baulac M, Jacque C, Duc P, Baumann N (1983) Transplantation of CNS fragments into the brain of shiverer mutant mice: extensive myelination by implanted oligodendrocytes. I. Immunohistochemical studies. Dev Neurosci 6:325–334

    PubMed  Google Scholar 

  • Lassmann H (2005) Stem cell and progenitor cell transplantation in multiple sclerosis: the discrepancy between neurobiological attraction and clinical feasibility. J Neurol Sci 233:83–86

    PubMed  CAS  Google Scholar 

  • Laule C, Vavasour IM, Kolind SH, Li DK, Traboulsee TL, Moore GR, MacKay AL (2007) Magnetic resonance imaging of myelin. Neurotherapeutics 4:460–484

    PubMed  CAS  Google Scholar 

  • Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096

    PubMed  CAS  Google Scholar 

  • Liu S, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, McDonald JW (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA 97:6126–6131

    PubMed  CAS  Google Scholar 

  • Louis JC, Magal E, Muir D, Manthorpe M, Varon S (1992) CG-4, a new bipotential glial cell line from rat brain, is capable of differentiating in vitro into either mature oligodendrocytes or type-2 astrocytes. J Neurosci Res 31:193–204

    PubMed  CAS  Google Scholar 

  • Ludwin SK (1978) Central nervous system demyelination and remyelination in the mouse. Lab Invest 39:597–612

    PubMed  CAS  Google Scholar 

  • Magy L, Mertens C, Avellana-Adalid V, Keita M, Lachapelle F, Nait-Oumesmar B, Fontaine B, Baron-Van Evercooren A (2003) Inducible expression of FGF2 by a rat oligodendrocyte precursor cell line promotes CNS myelination in vitro. Exp Neurol 184:912–922

    PubMed  CAS  Google Scholar 

  • Martino G, Franklin RJ, Van Evercooren AB, Kerr DA (2010) Stem cell transplantation in multiple sclerosis: current status and future prospects. Nat Rev Neurol 6:247–255

    PubMed  Google Scholar 

  • Mason JL, Toews A, Hostettler JD, Morell P, Suzuki K, Goldman JE, Matsushima GK (2004) Oligodendrocytes and progenitors become progressively depleted within chronically demyelinated lesions. Am J Pathol 164:1673–1682

    PubMed  Google Scholar 

  • Milward EA, Zhang SC, Zhao M, Lundberg C, Ge B, Goetz BD, Duncan ID (2000) Enhanced proliferation and directed migration of oligodendroglial progenitors co-grafted with growth factor-secreting cells. Glia 32:264–270

    PubMed  CAS  Google Scholar 

  • Mitome M, Low HP, van den Pol A, Nunnari JJ, Wolf MK, Billings-Gagliardi S, Schwartz WJ (2001) Towards the reconstruction of central nervous system white matter using neural precursor cells. Brain 124:2147–2161

    PubMed  CAS  Google Scholar 

  • Moore CS, Abdullah SL, Brown A, Arulpragasam A, Crocker SJ (2011) How factors secreted from astrocytes impact myelin repair. J Neurosci Res 89:13–21

    PubMed  CAS  Google Scholar 

  • Mothe AJ, Tator CH (2008) Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination. Exp Neurol 213:176–190

    PubMed  CAS  Google Scholar 

  • Mothe AJ, Kulbatski I, Parr A, Mohareb M, Tator CH (2008) Adult spinal cord stem/progenitor cells transplanted as neurospheres preferentially differentiate into oligodendrocytes in the adult rat spinal cord. Cell Transplant 17:735–751

    PubMed  Google Scholar 

  • Muja N, Cohen ME, Zhang J, Kim H, Gilad AA, Walczak P, Ben-Hur T, Bulte JW (2011) Neural precursors exhibit distinctly different patterns of cell migration upon transplantation during either the acute or chronic phase of EAE: a serial MR imaging study. Magn Reson Med 65:1738–1749

    PubMed  Google Scholar 

  • Neri M, Maderna C, Ferrari D, Cavazzin C, Vescovi AL, Gritti A (2010) Robust generation of oligodendrocyte progenitors from human neural stem cells and engraftment in experimental demyelination models in mice. PLoS One 5:e10145

    PubMed  Google Scholar 

  • Nicolay DJ, Doucette JR, Nazarali AJ (2007) Transcriptional control of oligodendrogenesis. Glia 55:1287–1299

    PubMed  Google Scholar 

  • Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS (2005) Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49:385–396

    PubMed  Google Scholar 

  • O’Leary MT, Blakemore WF (1997) Oligodendrocyte precursors survive poorly and do not migrate following transplantation into the normal adult central nervous system. J Neurosci Res 48:159–167

    PubMed  Google Scholar 

  • Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Sudhof TC, Wernig M (2011) Induction of human neuronal cells by defined transcription factors. Nature 476(7359):220–223

    PubMed  CAS  Google Scholar 

  • Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8:486–498

    PubMed  CAS  Google Scholar 

  • Patani R, Balaratnam M, Vora A, Reynolds R (2007) Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol 33:277–287

    PubMed  CAS  Google Scholar 

  • Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Brück W, Lucchinetti C, Lassmann H (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165–3172

    PubMed  Google Scholar 

  • Perez-Bouza A, Glaser T, Brüstle O (2005) ES cell-derived glial precursors contribute to remyelination in acutely demyelinated spinal cord lesions. Brain Pathol 15:208–216

    PubMed  Google Scholar 

  • Piaton G, Aigrot MS, Williams A, Moyon S, Tepavcevic V, Moutkine I, Gras J, Matho KS, Schmitt A, Soellner H, Huber AB, Ravassard P, Lubetzki C (2011) Class 3 semaphorins influence oligodendrocyte precursor recruitment and remyelination in adult central nervous system. Brain 134:1156–1167

    PubMed  Google Scholar 

  • Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A, Furlan R, Comi G, Vescovi AL, Martino G (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694

    PubMed  CAS  Google Scholar 

  • Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martinello M, Cattalini A, Bergami A, Furlan R, Comi G, Constantin G, Martino G (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271

    PubMed  CAS  Google Scholar 

  • Pluchino S, Gritti A, Blezer E, Amadio S, Brambilla E, Borsellino G, Cossetti C, Del Carro U, Comi G, t Hart B, Vescovi A, Martino G (2009) Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Ann Neurol 66:343–354

    PubMed  CAS  Google Scholar 

  • Poliak S, Peles E (2003) The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 4:968–980

    PubMed  CAS  Google Scholar 

  • Politi LS, Bacigaluppi M, Brambilla E, Cadioli M, Falini A, Comi G, Scotti G, Martino G, Pluchino S (2007) Magnetic-resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis. Stem Cells 25:2583–2592

    PubMed  Google Scholar 

  • Popovich PG, Longbrake EE (2008) Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci 9:481–493

    PubMed  CAS  Google Scholar 

  • Popovich PG, Guan Z, McGaughy V, Fisher L, Hickey WF, Basso DM (2002) The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol 61:623–633

    PubMed  CAS  Google Scholar 

  • Prineas J, Connell F (1979) Remyelination in multiple sclerosis. Ann Neurol 5:22–31

    PubMed  CAS  Google Scholar 

  • Prineas JW, McDonald WI (1997) Demyelinating diseases. In: Graham DI, Lantos PL (eds) Greenfield’s neurophathology, vol 1, 6 edn. Edward Arnonld, London, pp 813–896

    Google Scholar 

  • Raine CS, Wu E (1993) Multiple sclerosis: remyelination in acute lesions. J Neuropathol Exp Neurol 52:199–204

    PubMed  CAS  Google Scholar 

  • Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, Ben-Hur T (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19:1134–1140

    PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175:1–13

    PubMed  CAS  Google Scholar 

  • Rosenbluth J, Hasegawa M, Shirasaki N, Rosen CL, Liu Z (1990) Myelin formation following transplantation of normal fetal glia into myelin-deficient rat spinal cord. J Neurocytol 19:718–730

    PubMed  CAS  Google Scholar 

  • Rosenbluth J, Liu Z, Guo D, Schiff R (1993) Myelin formation by mouse glia in myelin-deficient rats treated with cyclosporine. J Neurocytol 22:967–977

    PubMed  CAS  Google Scholar 

  • Sasaki M, Lankford KL, Brown RJ, Ruddle NH, Kocsis JD (2010) Focal experimental autoimmune encephalomyelitis in the Lewis rat induced by immunization with myelin oligodendrocyte glycoprotein and intraspinal injection of vascular endothelial growth factor. Glia 58:1523–1531

    PubMed  Google Scholar 

  • Schonberg DL, Popovich PG, McTigue DM (2007) Oligodendrocyte generation is differentially influenced by toll-like receptor (TLR) 2 and TLR4-mediated intraspinal macrophage activation. J Neuropathol Exp Neurol 66:1124–1135

    PubMed  Google Scholar 

  • Setzu A, Ffrench-Constant C, Franklin RJM (2004) CNS axons retain their competence for myelination throughout life. Glia 45:307–311

    PubMed  Google Scholar 

  • Setzu A, Lathia JD, Zhao C, Wells K, Rao MS, Ffrench-Constant C, Franklin RJ (2006) Inflammation stimulates myelination by transplanted oligodendrocyte precursor cells. Glia 54:297–303

    PubMed  Google Scholar 

  • Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS (2010) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 28:152–163

    PubMed  CAS  Google Scholar 

  • Shen S, Sandoval J, Swiss VA, Li J, Dupree J, Franklin RJ, Casaccia-Bonnefil P (2008) Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci 11:1024–1034

    PubMed  CAS  Google Scholar 

  • Sher F, van Dam G, Boddeke E, Copray S (2009) Bioluminescence imaging of Olig2-neural stem cells reveals improved engraftment in a demyelination mouse model. Stem Cells 27:1582–1591

    PubMed  CAS  Google Scholar 

  • Shi JY, Marinovich A, Barres BA (1998) Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. J Neurosci 18:4627–4636

    PubMed  CAS  Google Scholar 

  • Shields SA, Gilson JM, Blakemore WF, Franklin RJM (1999) Remyelination occurs as extensively but more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. Glia 28:77–83

    PubMed  CAS  Google Scholar 

  • Sim FJ, McClain C, Schanz S, Protack TL, Windrem MS, Goldman SA (2011) CD140a identifies a population of highly myelinogenic, migration-competent, and efficiently engrafting human oligodendrocyte progenitor cells. Nat Biotechnol 29(10):934–941

    PubMed  CAS  Google Scholar 

  • Smith PM, Blakemore WF (2000) Porcine neural progenitors require commitment to the oligodendrocyte lineage prior to transplantation in order to achieve significant remyelination of demyelinated lesions in the adult CNS. Eur J Neurosci 12:2414–2424

    PubMed  CAS  Google Scholar 

  • Smith KJ, Blakemore WF, McDonald WI (1979) Central remyelination restores secure conduction. Nature 280:395–396

    PubMed  CAS  Google Scholar 

  • Smith KJ, Blakemore WF, McDonald WI (1981) The restoration of conduction by central remyelination. Brain 104:383–404

    PubMed  CAS  Google Scholar 

  • Stankoff B, Wang Y, Bottlaender M, Aigrot MS, Dolle F, Wu C, Feinstein D, Huang GF, Semah F, Mathis CA, Klunk W, Gould RM, Lubetzki C, Zalc B (2006) Imaging of CNS myelin by positron-emission tomography. Proc Natl Acad Sci USA 103:9304–9309

    PubMed  CAS  Google Scholar 

  • Syed YA, Hand E, Mobius W, Zhao C, Hofer M, Nave KA, Kotter MR (2011) Inhibition of CNS remyelination by the presence of semaphorin 3A. J Neurosci 31:3719–3728

    PubMed  CAS  Google Scholar 

  • Tepavcevic V, Blakemore WF (2005) Glial grafting for demyelinating disease. Philos Trans R Soc Lond B Biol Sci 360:1775–1795

    PubMed  CAS  Google Scholar 

  • Tepavcevic V, Blakemore WF (2006) Haplotype matching is not an essential requirement to achieve remyelination of demyelinating CNS lesions. Glia 54:880–890

    PubMed  CAS  Google Scholar 

  • The Multiple Sclerosis Study Group (1990) Efficacy and toxicity of cyclosporine in chronic progressive multiple sclerosis: a randomized, double-blinded, placebo-controlled clinical trial. Ann Neurol 27:591–605

    Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    PubMed  CAS  Google Scholar 

  • Tontsch U, Archer DR, Dubois-Dalcq M, Duncan ID (1994) Transplantation of an oligodendrocyte cell line leading to extensive myelination. Proc Natl Acad Sci USA 91:11616–11620

    PubMed  CAS  Google Scholar 

  • Totoiu MO, Nistor GI, Lane TE, Keirstead HS (2004) Remyelination, axonal sparing, and locomotor recovery following transplantation of glial-committed progenitor cells into the MHV model of multiple sclerosis. Exp Neurol 187:254–265

    PubMed  CAS  Google Scholar 

  • Tourbah A, Linnington C, Bachelin C, Avellana-Adalid V, Wekerle H, Baron-Van Evercooren A (1997) Inflammation promotes survival and migration of the CG4 oligodendrocyte progenitors transplanted in the spinal cord of both inflammatory and demyelinated EAE rats. J Neurosci Res 50:853–861

    PubMed  CAS  Google Scholar 

  • Trotter J, Crang AJ, Schachner M, Blakemore WF (1993) Lines of glial precursor cells immortalised with a temperature-sensitive oncogene give rise to astrocytes and oligodendrocytes following transplantation into demyelinated lesions in the central nervous system. Glia 9:25–40

    PubMed  CAS  Google Scholar 

  • Tsuji O, Miura K, Okada Y, Fujiyoshi K, Mukaino M, Nagoshi N, Kitamura K, Kumagai G, Nishino M, Tomisato S, Higashi H, Nagai T, Katoh H, Kohda K, Matsuzaki Y, Yuzaki M, Ikeda E, Toyama Y, Nakamura M, Yamanaka S, Okano H (2010) Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci USA 107:12704–12709

    PubMed  CAS  Google Scholar 

  • Utzschneider DA, Archer DR, Kocsis JD, Waxman SG, Duncan ID (1994) Transplantation of glial cells enhances action potential conduction of amyelinated spinal cord axons in the myelin-deficient rat. Proc Natl Acad Sci USA 91:53–57

    PubMed  CAS  Google Scholar 

  • Vaithianathar L, Tench CR, Morgan PS, Constantinescu CS (2003) Magnetic resonance imaging of the cervical spinal cord in multiple sclerosis – a quantitative T1 relaxation time mapping approach. J Neurol 250:307–315

    PubMed  Google Scholar 

  • Vitry S, Avellana-Adalid V, Hardy R, Lachapelle F, Baron-Van Evercooren A (1999) Mouse oligospheres: from pre-progenitors to functional oligodendrocytes. J Neurosci Res 58(6):735–751

    PubMed  CAS  Google Scholar 

  • Vitry S, Avellana-Adalid V, Lachapelle F, Van Evercooren AB (2001) Migration and multipotentiality of PSA-NCAM+ neural precursors transplanted in the developing brain. Mol Cell Neurosci 17:983–1000

    PubMed  CAS  Google Scholar 

  • Vowinckel E, Reutens D, Becher B, Verge G, Evans A, Owens T, Antel JP (1997) PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci Res 50:345–353

    PubMed  CAS  Google Scholar 

  • Walczak P, All AH, Rumpal N, Gorelik M, Kim H, Maybhate A, Agrawal G, Campanelli JT, Gilad AA, Kerr DA, Bulte JW (2011) Human glial-restricted progenitors survive, proliferate, and preserve electrophysiological function in rats with focal inflammatory spinal cord demyelination. Glia 59:499–510

    PubMed  Google Scholar 

  • Wang C, Wu C, Popescu DC, Zhu J, Macklin WB, Miller RH, Wang Y (2011a) Longitudinal near-infrared imaging of myelination. J Neurosci 31:2382–2390

    PubMed  Google Scholar 

  • Wang Y, Piao JH, Larsen EC, Kondo Y, Duncan ID (2011b) Migration and remyelination by oligodendrocyte progenitor cells transplanted adjacent to focal areas of spinal cord inflammation. J Neurosci Res 89(11):1737–1746

    PubMed  CAS  Google Scholar 

  • Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, Stanwood N, Rasband M, Roy NS, Nedergaard M, Havton LA, Wang S, Goldman SA (2008) Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2:553–565

    PubMed  CAS  Google Scholar 

  • Winkler C, Kirik D, Bjorklund A (2005) Cell transplantation in Parkinson’s disease: how can we make it work? Trends Neurosci 28:86–92

    PubMed  CAS  Google Scholar 

  • Yamanaka S, Blau HM (2010) Nuclear reprogramming to a pluripotent state by three approaches. Nature 465:704–712

    PubMed  CAS  Google Scholar 

  • Yandava BD, Billinghurst LL, Snyder EY (1999) “Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc Natl Acad Sci USA 96:7029–7034

    PubMed  CAS  Google Scholar 

  • Zawadzka M, Rivers LE, Fancy SP, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M, Rowitch DH, Kessaris N, Suter U, Richardson WD, Franklin RJ (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6:578–590

    PubMed  CAS  Google Scholar 

  • Zhang SC, Duncan ID (2000) Remyelination and restoration of axonal function by glial cell transplantation. In: Dunnett SB, Björklund A (eds) Functional neural transplantation, vol 2. Elsevier, Amsterdam, pp 515–533

    Google Scholar 

  • Zhang SC, Lipsitz D, Duncan ID (1998a) Self-renewing canine oligodendroglial progenitor expanded as oligospheres. J Neurosci Res 54:181–190

    PubMed  CAS  Google Scholar 

  • Zhang SC, Lundberg C, Lipsitz D, O’Connor LT, Duncan ID (1998b) Generation of oligodendroglial progenitors from neural stem cells. J Neurocytol 27:475–489

    PubMed  CAS  Google Scholar 

  • Zhang SC, Ge B, Duncan ID (1999) Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc Natl Acad Sci USA 96:4089–4094

    PubMed  CAS  Google Scholar 

  • Zhang SC, Ge B, Duncan ID (2000) Tracing human oligodendroglial development in vitro. J Neurosci Res 59:421–429

    PubMed  CAS  Google Scholar 

  • Zhang SC, Wernig M, Duncan ID, Brüstle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19:1129–1133

    PubMed  CAS  Google Scholar 

  • Zhang PL, Izrael M, Ainbinder E, Ben Simchon L, Chebath J, Revel M (2006) Increased myelinating capacity of embryonic stem cell derived oligodendrocyte precursors after treatment by interleukin-6/soluble interleukin-6 receptor fusion protein. Mol Cell Neurosci 31:387–398

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work supported from the I. D. Duncan’s lab cited here has been supported by the NMSS Translational Research Partnership on Nervous System Repair and Protection in MS (TR-3761), the Myelin Project, the Elizabeth Elser Doolittle Charitable Trust, and the Oscar Rennebohm Foundation. We are grateful to many past members of the lab for their scientific and technical contributions. This manuscript was skillfully prepared by Abigail Radcliff and Naomi Dahnert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian D. Duncan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duncan, I.D., Kondo, Y. (2013). Exogenous Cell Myelin Repair and Neuroprotection in Multiple Sclerosis. In: Duncan, I., Franklin, R. (eds) Myelin Repair and Neuroprotection in Multiple Sclerosis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2218-1_5

Download citation

Publish with us

Policies and ethics