Skip to main content

Methylmercury and Fish Nutrients in Experimental Models

  • Chapter
  • First Online:
Methylmercury and Neurotoxicity

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 2))

Abstract

The primary source of human exposure to methylmercury is fish and seafood, which are also the source of important nutrients. Developmental methylmercury exposure disrupts the formation of key brain structures, including the cortex, and has behavioral effects reflective of this disruption. Adult-onset exposure has a different pattern of effects, which emphasizes sensorimotor function. Some nutrients, like the omega-3 fatty acids and especially docosahexaenoic acid (DHA), are important for neural development and function. Others, like selenium, may be important, but they are less well understood. Selenium is, under some circumstances, protective against methylmercury exposure. This chapter summarizes studies using experimental models in which methylmercury exposure is examined with and without conjoint exposure to diets rich in selenium or DHA. Both adult-onset and developmental exposures are considered. Developmental methylmercury exposure has effects that extend into adulthood and aging. The pattern of effects is consistent with a hypothesis that development exposure disrupts reward processing, perhaps through disruption of dopamine neurotransmitter systems and cortical development. Selenium is protective against adult-onset but not developmental methylmercury exposure. DHA, which has benefits of its own, was not protective against either form of methylmercury exposure in animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amin-Zaki L, Elhassani SB, Majeed MA, Clarkson TW, Doherty RA, Greenwood MR. Methylmercury poisoning in mothers and their suckling infants. Dev Toxicol Environ Sci. 1980;8:75–8.

    PubMed  CAS  Google Scholar 

  • Atchison WD. Is chemical neurotransmission altered specifically during methylmercury-induced cerebellar dysfunction? Trends Pharmacol Sci. 2005;26:549–57.

    Article  PubMed  CAS  Google Scholar 

  • Bakir F, Damluju SF, Amin-Zaki L, Murtadha M, Khalidi A, Al-Rawi NY, Tikriti S, Dahahir HI, Clarkson TS, Smith JC, Doherty RA. Methyl mercury poisoning in Iraq. Science. 1973;181:230–41.

    Article  PubMed  CAS  Google Scholar 

  • Baum WM. Matching, undermatching, and overmatching in studies of choice. J Exp Anal Behav. 1979;32:269–81.

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA, Altman J, Russo RJ, Zhang X. Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology. 1993;14:83–144.

    PubMed  CAS  Google Scholar 

  • Becker C, Kyle D. The importance of DHA in optimal cognitive function in rodents. In: Mostofsky DI, Yehuda S, Salem N, editors. Fatty acids: physiological and behavioral functions. Totowa: Humana Press; 2001.

    Google Scholar 

  • Behne D, Pfeifer H, Rothlein D, Kyriakopoulos A. Cellular and subcellular distribution of selenium and selenium-containing proteins in the rat. In: Roussel AM, Favier AE, Anderson RA, editors. Trace elements in man and animals 10. New York: Kluwer Academic/Plenum; 2000. pp. 29–34.

    Google Scholar 

  • Bjornberg KA, Vahter M, Petersson-Grawe K, Glynn A, Cnattingius S, Darnerud PO, Atuma S, Aune M, Becker W, Berglund M. Methyl mercury and inorganic mercury in Swedish pregnant women and in cord blood: influence of fish consumption. Environ Health Perspect. 2003;111:637–41.

    Article  PubMed  CAS  Google Scholar 

  • Bjornberg KA, Vahter M, Berglund B, Niklasson B, Blennow M, Sandborgh-Englund G. Transport of methylmercury and inorganic mercury to the fetus and breast-fed infant.[see comment]. Environ Health Perspect. 2005;113:1381–5.

    Article  PubMed  CAS  Google Scholar 

  • Bornhausen M, Musch HR, Greim H. Operant behavior performance changes in rats after prenatal methylmercury exposure. Toxicol Appl Pharmacol. 1980;56:305–10.

    Article  PubMed  CAS  Google Scholar 

  • Bouton ME. Context and behavioral processes in extinction. Learn Memory. 2004;11:485–94.

    Article  Google Scholar 

  • Brenna JT. Efficiency of conversion of alpha-linolenic acid to long chain n-3 fatty acids in man. Curr Opin Clin Nutr Metab Care. 2002;5:127–32.

    Article  PubMed  CAS  Google Scholar 

  • Buelke-Sam J, Kimmel CA, Adams J, Nelson CJ, Vorhees CV, Wright DC, StOmer V, Butcher RE, Geyer MA. Collaborative behavioral teratology study: results. Neurobehav Toxicol Teratol. 1985;7:591–624.

    PubMed  CAS  Google Scholar 

  • Burbacher TM, Grant KS, Mayfield DB, Gilbert SG, Rice DC. Prenatal methylmercury exposure affects spatial vision in adult monkeys. Toxicol Appl Pharmacol. 2005a;208:21–8.

    Article  PubMed  CAS  Google Scholar 

  • Burbacher TM, Shen DD, Liberato N, Grant KS, Cernichiari E, Clarkson T. Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal. Environ Health Perspect. 2005b;113:1015–21.

    Article  PubMed  CAS  Google Scholar 

  • Burk RF, Laevander OA. Selenium. In: Shils ME, Olson JA, Shike M, Ross AC, editors. Modern nutrition in health and disease. Baltimore: Williams and Williams; 1999. pp. 265–76.

    Google Scholar 

  • Cagiano R, De Salvia MA, Renna G, Tortella E, Braghiroli D, Parenti C, Zanoli P, Baraldi M, Annau Z, Cuomo V. Evidence that exposure to methyl mercury during gestation induces behavioral and neurochemical changes in offspring of rats. Neurotoxicol Teratol. 1990;12:23–8.

    Article  PubMed  CAS  Google Scholar 

  • Carlson SE. Early determinants of development: a lipid perspective. Am J Clin Nutr. 2009;89:1523S–9S.

    Article  PubMed  CAS  Google Scholar 

  • Carlson SE, Neuringer M. Polyunsaturated fatty acid status and neurodevelopment: a summary and critical analysis of the literature. Lipids. 1999;34:171–8.

    Article  PubMed  CAS  Google Scholar 

  • Carrie I, Smirnova M, Clement M, De Javel D, Frances H, Bourre J. Docosahexaenoic acid-rich phospholipid supplementation: effect on behavior, learning ability, and retinal function in control and n-3 polyunsaturated fatty acid deficient old mice. Nutr Neurosci. 2002;5:43–52.

    Article  PubMed  CAS  Google Scholar 

  • Castoldi A, Barni S, Turin I, Gandini C, Manzo L. Early acute necrosis, delayed apoptosis and cytoskeletal breakdown in cultured cerebellar granule neurons exposed to methylmercury. J Neurosci Res. 2000;59:775–87.

    Article  PubMed  CAS  Google Scholar 

  • Castoldi A, Coccini T, Manzo L. Neurotoxic and molecular effects of methylmercury in humans. Rev Environ Health. 2003;18:19–31.

    PubMed  Google Scholar 

  • Cernichiari E, Toribara TY, Liang L, Marsh DO, Berlin MW, Myers GJ, Cox C, Shamlaye CF, Choisy O, Davidson P. The biological monitoring of mercury in the Seychelles study. Neurotoxicology. 1995;16:613–28.

    PubMed  CAS  Google Scholar 

  • Cheatham CL, Colombo J, Carlson SE. n-3 Fatty acids and cognitive and visual acuity development: methodologic and conceptual considerations. Am J Clin Nutr. 2006;83:1458S–66S.

    PubMed  CAS  Google Scholar 

  • Chen J, Berry MJ. Selenium and selenoproteins in the brain and brain diseases. J Neurochem. 2003;86:1–12.

    PubMed  CAS  Google Scholar 

  • Choi BH, Lapham LW, Amin-Zaki L, Saleem T. Abnormal neuronal migration, deranged cerebral cortical organization, and diffuse white matter astrocytosis of human fetal brain: a major effect of methylmercury poisoning in utero. J Neuropathol Exp Neurol. 1978;37:719–33.

    Article  PubMed  CAS  Google Scholar 

  • Choi AL, Budtz-Jørgensen E, Jørgensen PJ, Steuerwald U, Debes F, Weihe P, Grandjean P. Selenium as a potential protective factor against mercury developmental neurotoxicity. Environ Res. 2008;107:45–52.

    Article  PubMed  CAS  Google Scholar 

  • Chudasama Y, Robbins TW. Psychopharmacological approaches to modulating attention in the five-choice serial reaction time task: implications for schizophrenia. Psychopharmacology. 2004;174:86–98.

    Article  PubMed  CAS  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH. The biochemical basis of neuropharmacology. New York: Oxford; 2003.

    Google Scholar 

  • Coti Bertrand P, O’Kusky JR, Innis SM. Maternal dietary (n-3) fatty acid deficiency alters neurogenesis in the embryonic rat brain. J Nutr. 2006;136:1570–5.

    PubMed  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev. 2004;28:771–84.

    Article  PubMed  CAS  Google Scholar 

  • Davidson PW, Strain JJ, Myers GJ, Thurston SW, Bonham MP, Shamlaye CF, Stokes-Riner A, Wallace JMW, Robson PJ, Duffy EM, Georger LA, Sloane-Reeves J, Cernichiari E, Canfield RL, Cox C, Huang LS, Janciuras J, Clarkson TW. Neurodevelopmental effects of maternal nutritional status and exposure to methylmercury from eating fish during pregnancy. Neurotoxicology. 2008;29:767–75.

    Article  PubMed  CAS  Google Scholar 

  • Davison M, McCarthy D. The matching law: a research review. Hillsdale: Erlbaum; 1988.

    Google Scholar 

  • Day JJ, Reed MN, Newland MC. Neuromotor deficits and mercury concentrations in rats exposed to methyl mercury and fish oil. Neurotoxicol Teratol. 2005;27:629–41.

    Article  PubMed  CAS  Google Scholar 

  • Dias R, Robbins TW, Roberts AC. Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: restriction to novel situations and independence from “on-line” processing. J Neurosci. 1997;17:9285–97.

    PubMed  CAS  Google Scholar 

  • Dolbec J, Mergler D, Sousa Passos CJ, Sousa de Morais S, Lebel J. Methylmercury exposure affects motor performance of a riverine population of the Tapajos river, Brazilian Amazon. Int J Occup Med Environ Health. 2000;73:195–203.

    Article  CAS  Google Scholar 

  • Dore FY, Goulet S, Gallagher A, Harvey PO, Cantin JF, D’Aigle T, Mirault ME. Neurobehavioral changes in mice treated with methylmercury at two different stages of fetal development. Neurotoxicol Teratol. 2001;23:463–72.

    Article  PubMed  CAS  Google Scholar 

  • Dyrssen D, Wedborg M. The sulfur-mercury(II) system in natural-waters. Water Air Soil Pollut. 1991;56:507–19.

    Article  Google Scholar 

  • Eccles CU, Annau Z, Eccles CU, Annau Z. Prenatal methyl mercury exposure: II. Alterations in learning and psychotropic drug sensitivity in adult offspring. Neurobehav Toxicol Teratol. 1982;4:377–82.

    PubMed  CAS  Google Scholar 

  • Edwards JR, Marty MS, Atchison WD, Edwards JR, Marty MS, Atchison WD. Comparative sensitivity of rat cerebellar neurons to dysregulation of divalent cation homeostasis and cytotoxicity caused by methylmercury. Toxicol Appl Pharmacol. 2005;208:222–32.

    Article  PubMed  CAS  Google Scholar 

  • Endo T, Kimura O, Hisamichi Y, Minoshima Y, Haraguchi K. Age-dependent accumulation of heavy metals in a pod of killer whales (Orcinus orca) stranded in the northern area of Japan. Chemosphere. 2007;67:51–9.

    Article  PubMed  CAS  Google Scholar 

  • Eto K, Tokunaga H, Nagashima K, Takeuchi T. An autopsy case of minamata disease (methylmercury poisoning)—pathological viewpoints of peripheral nerves. Toxicol Pathol. 2002;30:714–22.

    Article  PubMed  CAS  Google Scholar 

  • Fedorova I, Salem N. Omega-3 fatty acids and rodent behavior. Prostaglandins Leukot Essen Fatty Acids. 2006;75:271–89.

    Article  CAS  Google Scholar 

  • Feldman RS, Meyer JS, Quenzer LF. Principles of neuropsychopharmacology. Sunderland: Sinauer Associates; 1997.

    Google Scholar 

  • Fiorillo CD, Tobler PN, Schultz W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science. 2003;299:1898–902.

    Article  PubMed  CAS  Google Scholar 

  • Ganther HE. Interactions of vitamin E and selenium with mercury and silver. Ann N Y Acad Sci. 1980;355:212–26.

    Article  PubMed  CAS  Google Scholar 

  • Ganther HE, Sunde ML. Factors in fish modifying methylmercury toxicity and metabolism. Biol Trace Elem Res. 2007;119:221–33.

    Article  PubMed  CAS  Google Scholar 

  • Ganther HE, Goudie C, Sunde ML, Kopecky MJ, Wagner P. Selenium: relation to decreased toxicity of methylmercury added to diets containing tuna. Science. 1972;175:1122–4.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SG, Burbacher TM, Rice DC. Effects of in utero methylmercury exposure on a spatial delayed alternation task in monkeys. Toxicol Appl Pharmacol. 1993;123:130–6.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SG, Rice DC, Burbacher TM. Fixed interval/fixed ratio performance in adult monkeys exposed in utero to methylmercury. Neurotoxicol Teratol. 1996;18:539–46.

    Article  PubMed  CAS  Google Scholar 

  • Goldey ES, O’Callaghan JP, Stanton ME, Barone Jr S, Crofton KM. Developmental neurotoxicity: evaluation of testing procedures with methylazoxymethanol and methylmercury. Fundam Appl Toxicol. 1994;23:447–64.

    Article  PubMed  CAS  Google Scholar 

  • Greiner RS, Moriguchi T, Hutton A, Slotnick BM, Salem N. Rats with low levels of brain docosahexaenoic acid show impaired performance in olfactory-based and spatial learning tasks. Lipids. 1999;34:S239–43.

    Article  PubMed  CAS  Google Scholar 

  • Gunderson V, Grant K, Burbacher T, Fagan J, Mottet N. The effect of low-level prenatal methylmercury exposure on visual recognition memory in infant crab-eating macaques. Child Dev. 1986;54:1076–83.

    Article  Google Scholar 

  • Harada M. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol. 1995;25:1–24.

    Article  PubMed  CAS  Google Scholar 

  • Harada M, Nakanishi J, Konuma S, Ohno K, Kimura T, Yamaguchi H, Tsuruta K, Kizaki T, Ookawara T, Ohno H. The present mercury contents of scalp hair and clinical symptoms in inhabitants of the Minamata area. Environ Res. 1998;77:160–4.

    Article  PubMed  CAS  Google Scholar 

  • He K, Daviglus ML. A few more thoughts about fish and fish oil. J Am Diet Assoc. 2005;105:350–1.

    Article  PubMed  Google Scholar 

  • Heath JC, Newland MC. Effects of methylmercury on the critical fusion frequency of rats international neurotoxicology conference. NC: Research Triangle Park; 2005.

    Google Scholar 

  • Heath JC, Banna KM, Reed MN, Pesek EF, Cole N, Li J, Newland MC. Dietary selenium protects against selected signs of methylmercury exposure and aging. Neurotoxicology. 2010;31:169–79.

    Article  PubMed  CAS  Google Scholar 

  • Hibbeln JR, Davis JM, Steer C, Emmett P, Rogers I, Williams C, Golding J. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet. 2007;369:578–85.

    Article  PubMed  Google Scholar 

  • Hodos W, Kalman G. Progressive ratio as a measure of reward strength. Science. 1961;134:943–4.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman DR, Theuer RC, Castañeda YS, Wheaton DH, Bosworth RG, O’Connor AR, Morale SE, Wiedemann LE, Birch EE. Maturation of visual acuity is accelerated in breast-fed term infants fed baby food containing DHA-enriched egg yolk. J Nutr. 2004;134:2307–13.

    PubMed  CAS  Google Scholar 

  • Hopf FW, Cascini MG, Gordon AS, Diamond I, Bonci A. Cooperative activation of dopamine D1 and D2 receptors increases spike firing of nucleus accumbens neurons via G-protein beta gamma subunits. J Neurosci. 2003;23:5079–87.

    PubMed  CAS  Google Scholar 

  • Hughes JA, Sparber SB. d-Amphetamine unmasks postnatal consequences of exposure to methylmercury in utero: methods for studying behavioral teratogenesis. Pharmacol Biochem Behav. 1978;8:365–75.

    Article  PubMed  CAS  Google Scholar 

  • Innis SM. Dietary (n-3) fatty acids and brain development. J Nutr. 2007;137:855–9.

    PubMed  CAS  Google Scholar 

  • Innis S, de La Presa, Owens S. Dietary fatty acid composition in pregnancy alters neurite membrane fatty acids and dopamine in newborn rat brain. J Nutr. 2001;131:118–22.

    PubMed  CAS  Google Scholar 

  • Jeffrey BG, Neuringer M. Age-related decline in rod phototransduction sensitivity in rhesus monkeys fed an n-3 fatty acid-deficient diet. Invest Ophthalmol Vis Sci. 2009;50:4360–7.

    Article  PubMed  Google Scholar 

  • Jeffrey BG, Weisinger HS, Neuringer M, Mitchell DC. The role of docosahexaenoic acid in retinal function. Lipids. 2001;36:859–71.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko JJ, Ralston NVC. Selenium and mercury in pelagic fish in the central north Pacific near Hawaii. Biol Trace Elem Res. 2007;119:242–54.

    Article  PubMed  CAS  Google Scholar 

  • Kheramin S, Body S, Herrera FM, Bradshaw CM, Szabadi E, Deakin JF, Anderson IM. The effect of orbital prefrontal cortex lesions on performance on a progressive ratio schedule: implications for models of inter-temporal choice. Behav Brain Res. 2005;156:145–52.

    Article  PubMed  CAS  Google Scholar 

  • Koibuchi N, Chin WW. Thyroid hormone action and brain development. Trends Endocrinol Metab. 2000;11:123–8.

    Article  PubMed  CAS  Google Scholar 

  • Kollins SH, Newland MC, Critchfield TS. Human sensitivity to reinforcement in operant choice: how much do consequences matter? Psychon Bull Rev. 1997;4:208–20.

    Article  PubMed  CAS  Google Scholar 

  • Kurylo DD. Effects of quinpirole on operant conditioning: perseveration of behavioral components. Behav Brain Res. 2004;155:117–24.

    Article  PubMed  CAS  Google Scholar 

  • Kurylo DD, Tanguay S. Effects of quinpirole on behavioral extinction. Physiol Behav. 2003;80:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Lebel J, Mergler D, Branches F, Lucotte M, Amorim M, Larribe F, Dolbec J. Neurotoxic effects of low-level methylmercury contamination in the Amazonian Basin. Environ Res. 1998;79:20–32.

    Article  PubMed  CAS  Google Scholar 

  • Lee SP, So CH, Rashid AJ, Varghese G, Cheng R, Lança AJ, O’Dowd BF, George SR. Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal. J Biol Chem. 2004;279:35671–8.

    Article  PubMed  CAS  Google Scholar 

  • Lynch ML, Huang L-S, Cox C, Strain JJ, Myers GJ, Bonham MP, Shamlaye CF, Stokes-Riner A, Wallace JMW, Duffy EM, Clarkson TW, Davidson PW. Varying coefficient function models to explore interactions between maternal nutritional status and prenatal methylmercury toxicity in the Seychelles Child Development Nutrition Study. Environ Res. 2011;111:75–80.

    Article  PubMed  CAS  Google Scholar 

  • Magos L. The absorption, distribution, and excretion of methyl mercury. In: Eccles CU, Annau Z, editors. The toxicity of methyl mercury. Baltimore: Johns Hopkins; 1987. pp. 24–44.

    Google Scholar 

  • Manfroi CB, Schwalm FD, Cereser V, Abreu F, Oliveira A, Bizarro L, Rocha JB, Frizzo ME, Souza DO, Farina M. Maternal milk as methylmercury source for suckling mice: neurotoxic effects involved with the cerebellar glutamatergic system. Toxicol Sci. 2004;81:172–8.

    Article  PubMed  CAS  Google Scholar 

  • Merigan WH. Visual fields and flicker thresholds in methylmercury-poisoned monkeys. In: Merigan WH, Weiss B, editors. Neurotoxicity of the visual system. New York: Raven; 1980. pp. 149–63.

    Google Scholar 

  • Mobini S, Chiang TJ, Ho MY, Bradshaw CM, Szabadi E. Comparison of the effects of clozapine, haloperidol, chlorpromazine and d-amphetamine on performance on a time-constrained progressive ratio schedule and on locomotor behaviour in the rat. Psychopharmacology. 2000;152:47–54.

    Article  PubMed  CAS  Google Scholar 

  • Møller-Madsen B, Danscher G. Localization of mercury in CNS of the rat. IV. The effect of selenium on orally administered organic and inorganic mercury. Toxicol Appl Pharmacol. 1991;108:457–73.

    Article  PubMed  Google Scholar 

  • Montague PR, Hyman SE, Cohen JD. Computational roles for dopamine in behavioural control. Nature. 2004;431:760–7.

    Article  PubMed  CAS  Google Scholar 

  • Mozaffarian DMDD, Rimm EBS. Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA. 2006;296:1885–99.

    Article  PubMed  CAS  Google Scholar 

  • National Research Council. Nutrient requirements of laboratory animals. Washington: National Academy Press; 1995.

    Google Scholar 

  • Nettleton JA, Katz R. n-3 long-chain polyunsaturated fatty acids in type 2 diabetes: a review. J Am Diet Assoc. 2005;105:428–40.

    Article  PubMed  CAS  Google Scholar 

  • Neuringer M. Infant vision and retinal function in studies of dietary long-chain polyunsaturated fatty acids: methods, results, and implications1,2,3. Am J Clin Nutr. 2000;71:256S–67S.

    PubMed  CAS  Google Scholar 

  • Neuringer M, Reisbick S, Janowsky J. The role of n-3 fatty acids in visual and cognitive development: current evidence and methods of assessment. J Pediatr. 1994;125:S39–47.

    Article  PubMed  CAS  Google Scholar 

  • Newland MC, Rasmussen EB. Aging unmasks adverse effects of gestational exposure to methylmercury in rats. Neurotoxicol Teratol. 2000;22:819–28.

    Article  PubMed  CAS  Google Scholar 

  • Newland MC, Reile PA. Blood and brain mercury levels after chronic gestational exposure to methylmercury in rats. Toxicol Sci. 1999;50:106–16.

    Article  PubMed  CAS  Google Scholar 

  • Newland MC, Yezhou S, Logdberg B, Berlin M. Prolonged behavioral effects of in utero exposure to lead or methyl mercury: reduced sensitivity to changes in reinforcement contingencies during behavioral transitions and in steady state. Toxicol Appl Pharmacol. 1994;126:6–15.

    Article  PubMed  CAS  Google Scholar 

  • Newland MC, Reile PA, Langston JL. Gestational exposure to methylmercury retards choice in transition in aging rats. Neurotoxicol Teratol. 2004;26:179–94.

    Article  PubMed  CAS  Google Scholar 

  • Newland MC, Reed MN, LeBlanc A, Donlin WD. Brain and blood mercury and selenium after chronic and developmental exposure to methylmercury. Neurotoxicology. 2006;27:710–20.

    Article  PubMed  CAS  Google Scholar 

  • Newland MC, Paletz EM, Reed MN. Methylmercury and nutrition: adult effects of fetal exposure in experimental models. Neurotoxicology. 2008;29:783–801.

    Article  PubMed  CAS  Google Scholar 

  • Newland MC, Paletz EM, Reed MN. Lactational exposure to mercury in experimental models. Neurotoxicology. 2009;30:160–3.

    Article  CAS  Google Scholar 

  • Nielsen JB, Andersen O, Grandjean P. Evaluation of mercury in hair, blood and muscle as biomarkers for methylmercury exposure in male and female mice. Arch Toxicol. 1994;68:317–21.

    Article  PubMed  CAS  Google Scholar 

  • Nordenhall K, Dock L, Vahter M. Lactational exposure to methylmercury in the hamster. Arch Toxicol. 1995;69:235–41.

    Article  PubMed  CAS  Google Scholar 

  • Novak EM, Dyer RA, Innis SM. High dietary [omega]-6 fatty acids contribute to reduced docosahexaenoic acid in the developing brain and inhibit secondary neurite growth. Brain Res. 2008;1237:136–45.

    Article  PubMed  CAS  Google Scholar 

  • Oken E, Kleinman KP, Berland WE, Simon SR, Rich-Edwards JW, Gillman MW. Decline in fish consumption among pregnant women after a national mercury advisory. Obstet Gynecol. 2003;102:346–51.

    Article  PubMed  Google Scholar 

  • Oken E, Radesky JS, Wright RO, Bellinger DC, Amarasiriwardena CJ, Kleinman KP, Hu H, Gillman MW. Maternal fish intake during pregnancy, blood mercury levels, and child cognition at age 3 years in a US cohort. Am J Epidemiol. 2008;167:1171–81.

    Article  PubMed  Google Scholar 

  • Oskarsson A, Hallen IP, Sundberg J. Exposure to toxic elements via breast milk. Analyst. 1995;120:765–70.

    Article  PubMed  CAS  Google Scholar 

  • Paletz EM, Craig-Schmidt MC, Newland MC. Gestational exposure to methylmercury and n-3 fatty acids: effects on high- and low-rate operant behavior in adulthood. Neurotoxicol Teratol. 2006;28:59–73.

    Article  PubMed  CAS  Google Scholar 

  • Paletz EM, Day JJ, Craig-Schmidt MC, Newland MC. Spatial and visual discrimination reversals in adult and geriatric rats exposed during gestation to methylmercury and n-3 polyunsaturated fatty acids. Neurotoxicology. 2007;28:707–19.

    Article  PubMed  CAS  Google Scholar 

  • Parran DK, Barone S, Mundy WR. Methylmercury decreases NGF-induced TrkA autophosphorylation and neurite outgrowth in PC12 cells. Brain Res Dev Brain Res. 2003;141:71–81.

    Article  PubMed  CAS  Google Scholar 

  • Passetti F, Dalley JW, Robbins TW. Double dissociation of serotonergic and dopaminergic mechanisms on attentional performance using a rodent five-choice reaction time task. Psychopharmacology. 2003;165:136–45.

    PubMed  CAS  Google Scholar 

  • Passos CJ, Mergler D, Lemire M, Fillion M, Guimaraes JR. Fish consumption and bioindicators of inorganic mercury exposure. Sci Total Environ. 2007;373:68–76.

    Article  PubMed  CAS  Google Scholar 

  • Podlesnik CA, Shahan TA. Extinction, relapse, and behavioral momentum. Behav Processes. 2010;84:400–11.

    Article  PubMed  Google Scholar 

  • Prohaska J, Ganther H. Interactions between selenium and methylmercury in rat brain. Chem Biol Interact. 1977;16:155–67.

    Article  PubMed  CAS  Google Scholar 

  • Ralston NVC. Selenium health benefit values as a seafood safety criteria. Ecohealth. 2008;5:442–55.

    Article  PubMed  Google Scholar 

  • Ralston NVC, Raymond LJ. Dietary selenium’s protective effects against methylmercury toxicity. Toxicology. 2010;278:112–23.

    Article  PubMed  CAS  Google Scholar 

  • Ralston NVC, Blackwell JL, Raymond LJ. Importance of molar ratios in selenium-dependent protection against methylmercury toxicity. Biol Trace Elem Res. 2007;119:255–68.

    Article  PubMed  CAS  Google Scholar 

  • Ralston NVC, Ralston CR, Blackwell Iii JL, Raymond LJ. Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology. 2008;29:802–11.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen EB, Newland MC. Developmental exposure to methylmercury alters behavioral sensitivity to d-amphetamine and pentobarbital in adult rats. Neurotoxicol Teratol. 2001;23:45–55.

    Article  PubMed  CAS  Google Scholar 

  • Rayman MP. The importance of selenium to human health. Lancet. 2000;356:233–41.

    Article  PubMed  CAS  Google Scholar 

  • Raymond LJ, Ralston NVC. Mercury: selenium interactions and health implications. Seychelles Med Dent J. 2004;7:72–7.

    Google Scholar 

  • Reed MN, Newland MC. Gestational methylmercury exposure selectively increases the sensitivity of operant behavior to cocaine. Behav Neurosci. 2009;123:408–17.

    Article  PubMed  CAS  Google Scholar 

  • Reed MN, Paletz EM, Newland MC. Gestational exposure to methylmercury and selenium: effects on a spatial discrimination reversal in adulthood. Neurotoxicology. 2006;27:721–32.

    Article  PubMed  CAS  Google Scholar 

  • Reed MN, Banna KM, Donlin WD, Newland MC. Effects of gestational exposure to methylmercury and dietary selenium on reinforcement efficacy in adulthood. Neurotoxicol Teratol. 2008;30:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Reeves PG. Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr. 1997;127:838S–41S.

    PubMed  CAS  Google Scholar 

  • Reisbick S, Neuringer M, Gohl E, Wald R, Anderson GJ. Visual attention in infant monkeys: effects of dietary fatty acids and age. Dev Psychol. 1997;33:387–95.

    Article  PubMed  CAS  Google Scholar 

  • Rice DC. Brain and tissue levels of mercury after chronic methylmercury exposure in the monkey. J Toxicol Environ Health. 1989;27:189–98.

    Article  PubMed  CAS  Google Scholar 

  • Rice DC. Effects of pre- plus postnatal exposure to methylmercury in the monkey on fixed interval and discrimination reversal performance. Neurotoxicology. 1992;13:443–52.

    PubMed  CAS  Google Scholar 

  • Rice DC. Evidence for delayed neurotoxicity produced by methylmercury. Neurotoxicology. 1996;17:583–96.

    PubMed  CAS  Google Scholar 

  • Rice DC. Age-related increase in auditory impairment in monkeys exposed in utero plus postnatally to methylmercury. Toxicol Sci. 1998;44:191–6.

    PubMed  CAS  Google Scholar 

  • Rice DC, Barone S. Critical periods of vulnerability for the developing nervous system: evidence from human and animal models. Environ Health Perspect. 2000;108:511–33.

    PubMed  Google Scholar 

  • Rice DC, Gilbert SG. Exposure to methyl mercury from birth to adulthood impairs high-frequency hearing in monkeys. Toxicol Appl Pharmacol. 1992;115:6–10.

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW. Dissociating executive functions of the prefrontal cortex. Philos Trans R Soc Lond [Biol]. 1996;351:1463–70; discussion 1470–1.

    Google Scholar 

  • Robbins TW, Arnsten AF. The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci. 2009;32:267–87.

    Article  PubMed  CAS  Google Scholar 

  • Rodefer JS, Carroll ME. A comparison of progressive ratio schedules versus behavioral economic measures: effect of an alternative reinforcer on the reinforcing efficacy of phencyclidine. Psychopharmacology. 1997;132:95–103.

    Article  PubMed  CAS  Google Scholar 

  • Roegge CS, Wang VC, Powers BE, Klintsova AY, Villareal S, Greenough W, Schantz SL. Motor impairment in rats exposed to PCBs and methylmercury during early development. Toxicol Sci. 2004;77:315–24.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto M, Wakabayashi K, Kakita A, Hitoshi T, Adachi T, Nakano A. Widespread neuronal degeneration in rats following oral administration of methylmercury during the postnatal developing phase: a model of fetal-type minamata disease. Brain Res. 1998;784:351–4.

    Article  PubMed  Google Scholar 

  • Sakamoto M, Kakita A, Wakabayashi K, Takahashi H, Nakano A, Akagi H. Evaluation of changes in methylmercury accumulation in the developing rat brain and its effects: a study with consecutive and moderate dose exposure throughout gestation and lactation periods. Brain Res. 2002a;949:51–9.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto M, Kubota M, Matsumoto S-i, Nakano A, Akagi H. Declining risk of methylmercury exposure to infants during lactation. Environ Res. 2002b;90:185–9.

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M, Farrar AM, Nunes EJ, Pardo M. Dopamine, behavioral economics, and effort. Front Behav Neurosci. 2010;4:12.

    Google Scholar 

  • Sandborgh-Englund G, Ask K, Belfrage E, Ekstrand J. Mercury exposure in utero and during infancy. J Toxicol Environ Health. 2001;63:317–20.

    Article  CAS  Google Scholar 

  • Schiønning JD, Larsen JO, Tandrup T, Brændgaard H. Selective degeneration of dorsal root ganglia and dorsal nerve roots in methyl mercury-intoxicated rats: a stereological study. Acta Neuropathol (Berl). 1998;96:191–201.

    Article  Google Scholar 

  • Schreiner G, Ulbrich B, Bass R. Testing strategies in behavioral teratology: II. Discrimination learning. Neurobehav Toxicol Teratol. 1986;8:567–72.

    PubMed  CAS  Google Scholar 

  • Skerfving S. Interaction between selenium and methylmercury. Environ Health Perspect. 1978;25:57–65.

    Article  PubMed  CAS  Google Scholar 

  • Skerfving S. Mercury in women exposed to methylmercury through fish consumption and in their newborn babies and breast milk. Bull Environ Contam Toxicol. 1988;41:475–782.

    Article  PubMed  CAS  Google Scholar 

  • Smith KM, Sahyoun NR. Fish consumption: recommendations versus advisories, can they be reconciled? Nutr Rev. 2005;63:39–46.

    Article  PubMed  Google Scholar 

  • Spanagel R, Weiss F. The dopamine hypothesis of reward: past and current status. Trends Neurosci. 1999;22:521–7.

    Article  PubMed  CAS  Google Scholar 

  • Stafford D, LeSage MG, Glowa JR. Progressive-ratio schedules of drug delivery in the analysis of drug self-administration: a review. Psychopharmacology. 1998;139:169–84.

    Article  PubMed  CAS  Google Scholar 

  • Stern S, Cox C, Cernichiari E, Balys M, Weiss B. Perinatal and lifetime exposure to methylmercury in the mouse: blood and brain concentrations of mercury to 26 months of age. Neurotoxicology. 2001;22:467–77.

    Article  PubMed  CAS  Google Scholar 

  • Strain JJ, Davidson PW, Bonham MP, Duffy EM, Stokes-Riner A, Thurston SW, Wallace JMW, Robson PJ, Shamlaye CF, Georger LA, Sloane-Reeves J, Cernichiari E, Canfield RL, Cox C, Huang LS, Janciuras J, Myers GJ, Clarkson TW. Associations of maternal long-chain polyunsaturated fatty acids, methyl mercury, and infant development in the Seychelles Child Development Nutrition Study. Neurotoxicology. 2008;29:776–82.

    Article  PubMed  CAS  Google Scholar 

  • Sundberg J, Jonsson S, Karlsson MO, Hallen IP, Oskarsson A. Kinetics of methylmercury and inorganic mercury in lactating and nonlactating mice. Toxicol Appl Pharmacol. 1998;151:319–29.

    Article  PubMed  CAS  Google Scholar 

  • Sundberg J, Ersson B, Lonnerdal B, Oskarsson A. Protein binding of mercury in milk and plasma from mice and man—a comparison between methylmercury and inorganic mercury. Toxicology. 1999a;137:169–84.

    Article  PubMed  CAS  Google Scholar 

  • Sundberg J, Jonsson S, Karlsson MO, Oskarsson A. Lactational exposure and neonatal kinetics of methylmercury and inorganic mercury in mice. Toxicol Appl Pharmacol. 1999b;154:160–9.

    Article  PubMed  CAS  Google Scholar 

  • Sundburg J, Oskarsson A, Albanus L. Methylmercury exposure during lactation: milk concentration and tissue uptake of mercury in the neonatal rat. Bull Environ Contam Toxicol. 1991;46:255–62.

    Article  Google Scholar 

  • Takeuchi TF, Fukumoto Y, Harada E. Influence of a dietary n-3 fatty acid deficiency on the cerebral catecholamine contents, EEG and learning ability in rat. Behav Brain Res. 2002;131:193–203.

    Article  PubMed  CAS  Google Scholar 

  • Thompson CC, Potter GB. Thyroid hormone action in neural development. Cereb Cortex. 2000;10:939–45.

    Article  PubMed  CAS  Google Scholar 

  • Tobler PN, Fiorillo CD, Schultz W. Adaptive coding of reward value by dopamine neurons. Science. 2005;307:1642–5.

    Article  PubMed  CAS  Google Scholar 

  • Tremblay L, Schultz W. Relative reward preference in primate orbitofrontal cortex. Nature. 1999;398:704–8.

    Article  PubMed  CAS  Google Scholar 

  • Uchino M, Okajima T, Eto K, Kumamoto T, Mishima I, Ando M. Neurologic features of chronic Minamata disease (organic mercury poisoning) certified at autopsy. Intern Med. 1995;34:744–7.

    Article  PubMed  CAS  Google Scholar 

  • Volz KG, von Cramon DY. How the orbitofrontal cortex contributes to decision making—a view from neuroscience. Prog Brain Res. 2009;174:61–71.

    Article  PubMed  Google Scholar 

  • Wagner GC, Reuhl KR, Ming X, Halladay AK. Behavioral and neurochemical sensitization to amphetamine following early postnatal administration of methylmercury (MeHg). Neurotoxicology. 2007;28:59–66.

    Article  PubMed  CAS  Google Scholar 

  • Wainwright PE. Dietary essential fatty acids and brain function: a developmental perspective on mechanisms. Proc Nutr Soc. 2002;61:61–9.

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K, Kakita A, Sakamoto M, Su M, Iwanaga K, Ikuta F. Variability of brain lesions in rats administered methylmercury at various postnatal development phases. Brain Res. 1995;705:267–72.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe C. Selenium deficiency and brain functions: the significance for methylmercury toxicity. Nippon Eiseigaku Zasshi. 2001;55:581–9.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe C, Yoshida K, Kasanuma Y, Kun Y, Satoh H. In utero methylmercury exposure differentially affects the activities of selenoenzymes in the fetal mouse brain. Environ Res. 1999;80:208–14.

    Article  PubMed  CAS  Google Scholar 

  • Weiss B, Reuhl K. Delayed neurotoxicity: a silent toxicity. In: Chang LW, editor. Principles of neurotoxicology. New York: Marcel Dekker; 1994. pp. 765–84.

    Google Scholar 

  • Weiss B, Clarkson TW, Simon W. Silent latency periods in methylmercury poisoning and in neurodegenerative disease. Environ Health Perspect. 2002;110 Suppl 5:851–4.

    Article  PubMed  CAS  Google Scholar 

  • Weiss B, Stern S, Cox C, Balys M. Perinatal and lifetime exposure to methylmercury in the mouse: behavioral effects. Neurotoxicology. 2005;26:675–90.

    Article  PubMed  CAS  Google Scholar 

  • Whanger PD. Selenium and the brain: a review. Nutr Neurosci. 2001;4:81–97.

    PubMed  CAS  Google Scholar 

  • Widholm JJ, Villareal S, Seegal RF, Schantz SL. Spatial alternation deficits following developmental exposure to Aroclor 1254 and/or methylmercury in rats. Toxicol Sci. 2004;82:577–89.

    Article  PubMed  CAS  Google Scholar 

  • Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94.

    Article  PubMed  CAS  Google Scholar 

  • Xun P, Hou N, Daviglus M, Liu K, Morris JS, Shikany JM, Sidney S, Jacobs DR, He K. Fish oil, selenium and mercury in relation to incidence of hypertension: a 20-year follow-up study. J Intern Med. 2011:175–186.

    Google Scholar 

  • Yamamoto N, Hashimoto A, Takemoto Y, Okuyama H, Nomura M, Kitajima R, Togashi T, Tamai Y. Effect of the dietary alpha-linolenate/linoleate balance on lipid compositions and learning ability of rats. II. Discrimination process, extinction process, and glycolipid compositions. J Lipid Res. 1988;29:1013–21.

    PubMed  CAS  Google Scholar 

  • Yasutake A, Hachiya N. Accumulation of inorganic mercury in hair of rats exposed to methylmercury or mecuric chloride. Tokushima J Exp Med. 2006;210:301–6.

    Article  CAS  Google Scholar 

  • Yoshida M, Watanabe C, Satoh H, Kishimoto T, Yamamura Y. Milk transfer and tissue uptake of mercury in suckling offspring after exposure of lactating maternal guinea pigs to inorganic or methylmercury. Arch Toxicol. 1994;68:174–8.

    Article  PubMed  CAS  Google Scholar 

  • Zareba G, Cernichiari E, Goldsmith LA, Clarkson TW. Validity of methyl mercury hair analysis: mercury monitoring in human scalp/nude mouse model. J Appl Toxicol. 2008;28:535–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by NIH ES003299.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Christopher Newland PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Newland, M.C. (2012). Methylmercury and Fish Nutrients in Experimental Models. In: Ceccatelli, S., Aschner, M. (eds) Methylmercury and Neurotoxicity. Current Topics in Neurotoxicity, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2383-6_4

Download citation

Publish with us

Policies and ethics