Skip to main content

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 66))

Abstract

The Dirichlet problem for the bi-harmonic equation is considered as the Kirchhoff model of an isotropic elastic plate clamped at its edge. The plate is supported at certain points P 1,…,P J, that is, the deflexion u(x) satisfies the Sobolev point conditions u(P 1)=⋯=u(P J)=0. The optimal location of the support points is discussed such that either the compliance functional or the minimal deflexion functional attains its minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For this work, Mademoiselle Sophie Germain was awarded with a prize by French Academy of Sciences. Actually, the original manuscript contained a mistake corrected by Poisson [25] in 1829.

  2. 2.

    Two Kirchhoff hypotheses contradict to each other and must be used in a proper order and at an appropriate moment of the analysis. An example of the erroneous usage of the hypotheses leading to a wrong conclusion is explained and discussed in [28] (see also [23, Mistake 4.2.5]).

References

  1. Boggio, T.: Sulle funzioni di Green d’ordine m. Rend. Circ. Mat. Palermo 20, 97–135 (1905)

    Article  MATH  Google Scholar 

  2. Bouchitté, G., Jimenez, C., Mahadevan, R.: Asymptotic analysis of a class of optimal location problems. J. Math. Pures Appl. 95(4), 382–419 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buttazzo, G., Oudet, E., Stepanov, E.: Optimal transportation problems with free Dirichlet regions. In: Variational Methods for Discontinuous Structures, Cernobbio 2001. Progress in Nonlinear Differential Equations, vol. 51, pp. 41–65. Birkhäuser, Basel (2002)

    Chapter  Google Scholar 

  4. Buttazzo, G., Santambrogio, F., Varchon, N.: Asymptotics of an optimal compliance-location problem. ESAIM Control Optim. Calc. Var. 12, 752–769 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ciarlet, P.G.: Mathematical Elasticity, II: Theory of Plates. North-Holland, Amsterdam (1997)

    Google Scholar 

  6. Ciarlet, P.G., Destuynder, P.: A justification of the two-dimensional plate model. J. Méc. 18, 315–344 (1979)

    MathSciNet  MATH  Google Scholar 

  7. Ciarlet, P.G., Rabier, P.: The von Kármán Equations. Lecture Notes in Mathematics, vol. 826. Springer, Berlin (1980)

    Google Scholar 

  8. Cosserat, E., Cosserat, F.: Théorie des Corps Déformables. Hermann, Paris (1909)

    Google Scholar 

  9. Dauge, M., Gruais, I.: Edge layers in thin elastic plates. Comput. Methods Appl. Mech. Eng. 157(3–4), 335–347 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Destuynder, P.: Une Théorie Asymptotique des Plaques Minces en Elasticité Linéaire. Masson, Paris (1986)

    MATH  Google Scholar 

  11. Duffin, R.J.: On a question of Hadamard concerning super-bi-harmonic functions. J. Math. Phys. 27, 253–258 (1949)

    MathSciNet  MATH  Google Scholar 

  12. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  13. Germain, S.: Recherches sur la Théorie des Surfaces Élastiques. Courcier, Paris (1821)

    Google Scholar 

  14. Kirchhoff, G.R.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math. 40, 51–88 (1850) and 56, 285–313 (1859)

    Article  MATH  Google Scholar 

  15. Kondratiev, V.A.: Boundary problems for elliptic equations in domains with conical or angular points. Tr. Mosk. Mat. Obŝ. 16, 209–292 (1967). English transl.: Trans. Moscow Math. Soc. 16, 227–313 (1967)

    Google Scholar 

  16. Kulikov, A., Nazarov, S.A., Sweers, G.: On Airy functions and stresses in nonisotropic heterogeneous 2d-elasticity. Z. Angew. Math. Mech. 88, 955–981 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ladyzhenskaya, O.A.: Boundary Value Problems of Mathematical Physics. Applied Math. Sciences, vol. 49. Springer, New York (1985)

    Google Scholar 

  18. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972)

    Google Scholar 

  19. Maz’ja, V.G., Morozov, N.F., Plamenevskii, B.A.: On nonlinear bending of a plate with a crack. Differential and integral equations. Boundary value problems. In: I.N. Vekua Memorial Collection, Tbilisi, pp. 145–163 (1979). Engl. transl.: Amer. Math. Soc. Transl. 123, 125–139 (1984)

    Google Scholar 

  20. Maz’ya, W.G., Nazarov, S.A., Plamenevskii, B.: Asymptotische Theorie Elliptischer Randwertaufgaben in Singulär Gestörten Gebieten, vol. 1. Akademie-Verlag, Berlin (1991). English transl.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. I. Birkhäuser, Basel (2000)

    Google Scholar 

  21. Mikhlin, S.G.: Variational Methods in Mathematical Physics. Nauka, Moscow (1970). English transl.: Pergamon Press, Oxford (1964)

    Google Scholar 

  22. Morgenstern, D.: Herleitung der Plattentheorie aus der dreidimensionallen Elastozitätstheorie. Arch. Ration. Mech. Anal. 3, 145–152 (1959)

    Article  Google Scholar 

  23. Nazarov, S.A.: Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Estimates, vol. 1. Nauchnaya Kniga, Novosibirsk (2002)

    Google Scholar 

  24. Percivale, D., Podio-Guidugli, P.: A general linear theory of elastic plates and its variational validation. Boll. Unione Mat. Ital. 2, 321–341 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Poisson, S.D.: Mémoire sur l’équilibre et le mouvement des corps élastiques. Mém. Acad. Sci. Inst. Fr. 8, 357–570 (1929)

    Google Scholar 

  26. Reissner, E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184–191 (1944)

    MathSciNet  MATH  Google Scholar 

  27. Shoikhet, B.A.: On asymptotically exact equations of thin plates of complex structure. Prikl. Mat. Meh. 37, 914–924 (1973). English transl.: J. Appl. Math. Mech. 37, 867–877 (1974)

    MathSciNet  Google Scholar 

  28. Zorin, I.S., Nazarov, S.A.: Edge effect in the bending of a thin three-dimensional plate. Prikl. Mat. Meh. 53, 642–650 (1989). English transl.: J. Appl. Math. Mech. 53, 500–507 (1989)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Giuseppe Buttazzo is part of the project 2008K7Z249 Trasporto ottimo di massa, disuguaglianze geometriche e funzionali e applicazioni financed by the Italian Ministry of Research. The work of Sergey A. Nazarov has been supported by the Russian Foundation of Basic Research, Grant 09-01-00759.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Buttazzo .

Editor information

Editors and Affiliations

Appendix

Appendix

Let us assume that the points P 1,…,P J in are different, i.e., for jk, but the additional points \(P^{J+1}_{\varepsilon},\dots,P^{N}_{\varepsilon}\) are situated close to P J which is put at the coordinate origin . In other words,

$$P^j_\varepsilon=\varepsilon X^j,\quad j=J+1,\dots,N,$$

where X jX k for jk, |X j|≤1, and ε>0 is a small parameter. We denote by the set

$$\bigl\{P^1,\dots,P^J,P^{J+1}_\varepsilon,\dots,P^N_\varepsilon\bigr\}$$

and by u ε the solution to the Sobolev problem (10), (8), (2) with the support points listed above, i.e., with replacing . The notation u is kept for the solution of the Sobolev problem with .

By representation (29), (30) of u and estimate (4) for w, we recall the smoothness of the regular part of the Green function G and observe that (compare Lemma 2)

where a is a constant, and a neighborhood of the point which is free of the points P 1,…,P J−1. Hence, the Sobolev theorem on embedding H 4C 2 ensures the pointwise estimates

(60)

Notice that the quantities |a|, b, and do not exceed \(c\|f\|_{L^{2}(\varOmega )}\) with some constant c (cf. (13)).

The function vanishes at all points P 1,…,P J, and, therefore, the difference uu ε can be taken as the test function in the integral identity for u, that is,

$$ \bigl(\varDelta _x u,\varDelta _x\bigl(u-u^\varepsilon\bigr) \bigr)_\varOmega =\bigl(f,u-u^\varepsilon \bigr)_\varOmega .$$
(61)

The function may not belong to , and we multiply it by χ(|lnε|−1|ln|x||), where χ is a smooth cut-off function such that

$$0\le\chi\le1,\qquad\chi(t)=0\quad\mbox{for }t\ge1, \quad\chi (t)=1\quad\mbox{for }t\le1/2.$$

Notice that

$$ \begin{aligned}[c]&\chi\bigl(|\ln\varepsilon|^{-1}\bigl|\ln|x|\bigr|\bigr)=0\quad \mbox{for }|x|\le \varepsilon,\\&\chi\bigl(|\ln\varepsilon|^{-1}\bigl|\ln|x|\bigr|\bigr)=1\quad \mbox{for }|x|>\varepsilon^{1/2},\end{aligned}$$
(62)

and, therefore, the product χu vanishes at the points \(P^{J+1}_{\varepsilon},\dots,P^{N}_{\varepsilon}\) which live in the ε-neighborhood of . Here and further, the argument |lnε|−1|ln|x|| is assumed for χ.

We insert u εχu into the integral identity for u ε and, after a simple transformation, obtain

(63)

where [Δ x ,χ] is the commutator of the Laplace operator and the multiplication operator, i.e.,

$$ [\varDelta _x,\chi]u=2(\nabla_xu)^\top\nabla_x\chi+u\varDelta _x\chi,$$
(64)

while, in view of (62), expression (64) differs from zero in the annulus Θ(ε)={x : ε<|x|<ε 1/2} only.

Applying estimates (60) and differentiating the cut-off function, we observe that

Using a similar but simpler argument and taking the first and third estimates (60) into account yield

Thus, adding (63) to (61) and using the second fundamental inequality, we derive the relation

where c Ω >0, and hence

$$ \bigl\|u-u^\varepsilon\bigr\|_{H^2(\varOmega )}\le c|\ln\varepsilon |^{-1/2}\|f\|_{L^2(\varOmega )}.$$
(65)

The following assertion becomes trivial.

Lemma 4

Under the above restriction on the location of the points P 1,…P J and \(P^{J+1}_{\varepsilon},\dots ,P^{N}_{\varepsilon}\), there holds estimate (65) and the relationship

$$ E(u;f)\le E\bigl(u^\varepsilon;f\bigr)\le E(u;f)+c|\ln \varepsilon|^{-1/2}\|f\|_{L^2(\varOmega )}^2.$$
(66)

A formula of type (31) relates the solutions of the Sobolev problems with supports at P 1,…,P J and P 1,…,P J,P J+1,…,P N. Thus, locating the additional points P J+1,…,P N at a small distance from P 1,…,P J gives a small increment to the energy functional, due to estimate (66). This means that placing new support points near the old ones P 1,…,P J is surely not profitable.

If the point P J+1 stays near a point Q on the boundary ∂ω, i.e., |P J+1Q|=ε≪1, then by virtue of the conditions (2), estimates (60) turn into

where \(b=c\|f\|_{L^{2}(\varOmega )}\), \(d(x)=\operatorname {dist}(x,\partial\omega)\), and is a neighborhood of Q. This modification brings the small factor ε instead of |lnε|−1/2 into inequalities (65) and (66). In other words, putting a new support point near the clamped boundary is not advantageous as well.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Buttazzo, G., Nazarov, S.A. (2012). Optimal Location of Support Points in the Kirchhoff Plate. In: Buttazzo, G., Frediani, A. (eds) Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design. Springer Optimization and Its Applications(), vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2435-2_5

Download citation

Publish with us

Policies and ethics