Skip to main content

Degradation Mechanisms in LED Packages

  • Chapter
  • First Online:
Solid State Lighting Reliability

Part of the book series: Solid State Lighting Technology and Application Series ((SSLTA,volume 1))

Abstract

Lumen depreciation is one of the major failure modes in light-emitting diode (LED) systems. It originated from the degradation of the different components within the package, being the LED device or chip, the driver, and the optical materials (including phosphorous layer). This chapter describes the state of the art of the degradation mechanism for these components and how they contribute to the lumen depreciation of the LED package as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Energy Agency (2006) Light’s labours lost—fact sheet. http://www.iea.org/textbase/nppdf/free/2006/light_fact.pdf

  2. Alliance for Solid-State Illumination Systems and Technologies (ASSIST) (2007) Recommendations for testing and evaluating luminaires used in directional lighting (cited 2nd Feb 2010). http://www.lrc.rpi.edu/programs/solidstate/assist/pdf/directional3.pdf

  3. Mottier P (2009) LEDs for lighting applications. ISTE, Great Britain

    Book  Google Scholar 

  4. US Department of Energy (2009) LED applications. http://www.ssl.energy.gov

  5. Yole Development Report (2009) HB led & led packaging 2009

    Google Scholar 

  6. Nakamura S, Senoh M, Mukai T (1993) P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes. Jap J Appl Phys: Part 2 Lett 32:8

    Article  Google Scholar 

  7. Petroski J (2002) Thermal challenges facing new generation Light Emitting Diodes (LEDs) for lighting applications. Solid State Light II 4776:215–222

    Google Scholar 

  8. “LED” (2005) The American heritage science dictionary. Houghton Mifflin Company. http://dictionary.reference.com/browse/led and http://www.thefreedictionary.com/LED. Accessed 22 Jun 2011

  9. DOE (2009) U.S. LED measurement series: LED luminaire reliability (cited 28 Jan 2010). http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/luminaire_reliability.pdf

  10. Ye H, Zhang G (2011) A review of passive thermal management of LED module. J Semicond 32:014008

    Article  Google Scholar 

  11. Philips Lighting. Fortimo LED DLM system. http://www.lighting.philips.co.uk

  12. Archenhold G (2009) Driving responsibly, in Mondo arc. Mondiale Publishing Ltd., United Kingdom, pp 93–94

    Google Scholar 

  13. Lahyani A et al (1998) Failure prediction of electrolytic capacitors during operation of a switchmode power supply. IEEE Trans Power Electron 13(6):1199–1207

    Article  Google Scholar 

  14. Malik R et al (2005) Why do power supplies fail, and what can be done about it. IBM

    Google Scholar 

  15. Gasperi ML (1996) Life prediction model for aluminum electrolytic capacitors. Industry Applications Conference, 1996. Thirty-First IAS Annual Meeting, IAS '96, 3:1347–1351

    Google Scholar 

  16. Han L, Narendran N (2009) Developing an accelerated life test method for LED drivers. Ninth International conference on solid state lighting, august 3–5 2009, San Diego, Proceeding of SPIE 7422:742209, p 78–86

    Google Scholar 

  17. The University of Bolton. Electrolytic capacitors. http://www.ami.ac.uk/courses/topics/0136_ec/index.html

  18. Panasonic, Reliability of aluminum electrolytic capacitors, http://industrial.panasonic.com/www-data/pdf/ABA0000/ABA0000TE4.pdf

  19. Down JL (1986) The yellowing of epoxy resin adhesives: report on high-intensity light aging. Stud Conserv 31:159–170

    Article  Google Scholar 

  20. Down JL (1984) The yellowing of epoxy resin adhesives: report on natural dark aging. Stud Conserv 29(2):63–76

    Article  Google Scholar 

  21. Gesner BD, Kelleher PG (1968) Thermal and photo-oxidation of polysulfone. J Appl Polym Sci 12(5):1199–1208

    Article  Google Scholar 

  22. Akhavan J et al (2001) Effect of UV and thermal radiation on polyNIMMO. Polymer 42(18):7711–7718

    Article  Google Scholar 

  23. Huang JC et al (2004) Comparison of epoxy resins for applications in light-emitting diodes. Adv Polym Technol 23(4):298–306

    Article  Google Scholar 

  24. Ollier-Dureault V, Gosse B (1998) Photooxidation of anhydride-cured epoxies: FTIR study of the modifications of the chemical structure. J Appl Polym Sci 70(6):1221–1237

    Article  Google Scholar 

  25. Thompson T, Klemchuk P (1993) Light stabilization of bisphenol A polycarbonate. Polymer durability: degradation, stabilization, and lifetime prediction, American Chemical Society, Washington DC, 1996 303–317

    Google Scholar 

  26. Anderson J, Reese C (1960) Proceedings of the Chemical Society, London. Photo-induced Fries rearrangements, 217

    Google Scholar 

  27. Diepens M (2009) Photodegradation and stability of bisphenol A polycarbonate in weathering conditions. Polymer Degradation and Performance, ACS Symposium Series 1004:287–306

    Google Scholar 

  28. Andrady Norma D, Anthony L (1992) Wavelength sensitivity of unstabilized and UV stabilized polycarbonate to solar simulated radiation. Polym Degrad Stab 35:235–247

    Article  Google Scholar 

  29. Gupta A, Rembaum A, Moacanin J (1978) Solid state photochemistry of polycarbonates. Macromolecules 11(6):1285–1288

    Article  Google Scholar 

  30. Factor A, Ligon WV, May RJ (1987) The role of oxygen in the photoaging of bisphenol A polycarbonate. 2. GC/GC/high-resolution MS analysis of Florida-weathered polycarbonate. Macromolecules 20(10):2461–2468

    Article  Google Scholar 

  31. Munro HS, Allaker RS (1985) Wavelength dependence of the surface photo-oxidation of bisphenol A polycarbonate. Polym Degrad Stab 11:349–358

    Article  Google Scholar 

  32. Lemaire J et al (1986) Dual photo-chemistries in aliphatic polyamides, bisphenol A polycarbonate and aromatic polyurethanes—a short review. Polym Degrad Stab 15(1):1–13

    Article  Google Scholar 

  33. Kameshwar Yadavalli. Solid state lighting. http://www.nd.edu/~gsnider/EE698A/Kameshwar_Light-emitting-diodes.ppt

  34. OIDA (2001) Light Emitting Diodes (LEDs) for general illumination. http://lighting.sandia.gov/lightingdocs/JonesEDLEDRoadmap200103.pdf

  35. Kawakami Y, Funato M (2008) Light-emitting diode design allows precise control of colors and intensity, 29 April 2008, SPIE Newsroom. doi:10.1117/2.1200804.1109

  36. Shao Q et al (2012) Temperature-dependent photoluminescence properties of (Y, Lu)3Al5O12:Ce3+ phosphors for white LEDs applications. J Lumin (in press)

    Google Scholar 

  37. Chiang C-C, Tsai M-S, Hon M-H (2008) Luminescent properties of cerium-activated garnet series phosphor: structure and temperature effects. J Electrochem Soc 155(6):B517–B520

    Article  Google Scholar 

  38. Coetsee E, Terblans JJ, Swart HC (2007) Degradation of Y2SiO5:Ce phosphor powders. J Lumin 126(1):37–42

    Article  Google Scholar 

  39. Swart HC, Hillie KT (2000) Degradation of ZnS FED phosphors. Surf Interface Anal 30(1):383–386

    Article  Google Scholar 

  40. Tan CM et al (2008) Humidity effect on the degradation of packaged ultra-bright white LEDs. In: 10th electronics packaging technology conference (EPTC) 2008, Singapore

    Google Scholar 

  41. Tan CM et al (2009) Analysis of humidity effects on the degradation of high-power white LEDs. Microelectron Reliab 49(9–11):1226–1230

    Google Scholar 

  42. Hyun Ho S, Jae Soo Y (2008) Failure analysis of a phosphor-converted white light-emitting diode due to the CaS:Eu phosphor. Jap J Appl Phys 47(5):3524–3526

    Article  Google Scholar 

  43. Tsai CC et al (2009) Investigation of Ce:YAG doping effect on thermal aging for high-power phosphor-converted white-light-emitting diodes. IEEE Trans Device Mater Reliab 9(3):367–371

    Article  Google Scholar 

  44. Uddin A, Wei A, Andersson T (2005) Study of degradation mechanism of blue light emitting diodes. Thin Solid Films 483(1–2):378–381

    Article  Google Scholar 

  45. Meneghini M et al (2008) A review on the reliability of GaN-based LEDs. IEEE Trans Device Mater Reliab 8(2):323–331

    Article  Google Scholar 

  46. Manyakhin F, Kovalev A, Yunovich A (1998) Aging mechanisms of InGaN/AlGaN/GaN light-emitting diodes operating at high currents. MRS Internet J Nitride Semicond Res 3:53

    Google Scholar 

  47. Pavesi M et al (2004) Optical evidence of an electrothermal degradation of InGaN-based light-emitting diodes during electrical stress. Appl Phys Lett 84:3403

    Article  Google Scholar 

  48. Meneghini M et al (2006) High-temperature failure of GaN LEDs related with passivation. Superlattices Microstruct 40(4–6):405–411

    Article  Google Scholar 

  49. Meneghini M et al (2007) Reversible degradation of ohmic contacts on p-GaN for application in high-brightness LEDs. IEEE Trans Electron Devices 54(12):3245–3251

    Article  Google Scholar 

  50. Polyakov A et al (2002) Enhanced tunneling in GaN/InGaN multi-quantum-well heterojunction diodes after short-term injection annealing. J Appl Phys 91:5203

    Article  Google Scholar 

  51. Meneghesso G et al (2009) Electrostatic discharge and electrical overstress on GaN/InGaN light emitting diodes. IEEE Microelectronics Reliability 39:635–646

    Google Scholar 

  52. Youn CJ et al (2003) Influence of various activation temperatures on the optical degradation of Mg doped InGaN/GaN MQW blue LEDs. J Cryst Growth 250(3–4):331–338

    Article  Google Scholar 

  53. Chuo CC, Lee CM, Chyi JI (2001) Interdiffusion of In and Ga in InGaN/GaN multiple quantum wells. Appl Phys Lett 78:314

    Article  Google Scholar 

  54. Lee W et al (2006) Effect of thermal annealing induced by p-type layer growth on blue and green LED performance. J Cryst Growth 287(2):577–581

    Article  Google Scholar 

  55. Grillot PN et al (2006) Sixty thousand hour light output reliability of AlGaInP light emitting diodes. IEEE Trans Device Mater Reliab 6(4):564–574

    Article  Google Scholar 

  56. Rossi F et al (2006) Influence of short-term low current dc aging on the electrical and optical properties of InGaN blue light-emitting diodes. J Appl Phys 99:053104

    Article  Google Scholar 

  57. Craford M, Steranka F (1994) Light-emitting diodes. Encyclopedia Appl Phys 8:85–514

    Google Scholar 

  58. Seager C et al (2002) Drift, diffusion, and trapping of hydrogen in p-type GaN. J Appl Phys 92:7246

    Article  Google Scholar 

  59. Polyakov A et al (2003) Hydrogen plasma passivation effects on properties of p-GaN. J Appl Phys 94:3960

    Article  Google Scholar 

  60. Myers S et al (2002) Electron-beam dissociation of the MgH complex in p-type GaN. J Appl Phys 92:6630

    Article  Google Scholar 

  61. Meneghini M et al (2010) A review on the physical mechanisms that limit the reliability of GaN-based LEDs. IEEE Trans Electron Devices 57:108–118

    Article  Google Scholar 

  62. Arnold J (2007) When the lights go out: LED failure modes and mechanisms. http://www.emsnow.com/cnt/files/WhitePapers/DFRLEDFailures.pdf

  63. Koh SW (2009) Fatigue modeling of nano-structured chip-to-package interconnections, PhD Thesis, Georgia Institute of Technology, publication number 3364229

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Koh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koh, S., van Driel, W.D., Yuan, C.A., Zhang, G.Q. (2013). Degradation Mechanisms in LED Packages. In: van Driel, W., Fan, X. (eds) Solid State Lighting Reliability. Solid State Lighting Technology and Application Series, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3067-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3067-4_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3066-7

  • Online ISBN: 978-1-4614-3067-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics