Skip to main content

Transformation as a Fundamental Concept in Arithmetical Competence Modelling: An Example of Informatical Educational Science

  • Chapter
  • First Online:
Transformation - A Fundamental Idea of Mathematics Education
  • 1131 Accesses

Abstract

Interpreting calculations as sequences of transformations on arithmetical expressions, like 3 × 12, opens new opportunities for understanding and modelling arithmetical competence. Arithmeticus is a computer program that produces sequences of transformations, which can be applied to arithmetical expressions. It can analyse the sequence of transformations used in a student’s calculation, store them and try to apply them on other expressions. In this paper it will be explained how these features are a basis of a dynamic model of arithmetical competence. Additionally, informatical educational science will be proposed as a special approach of investigating learning and teaching processes by informatical methods: in the case of Arithmeticus, by the dynamical modelling of arithmetical competence and learning and teaching processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter ‘production’ is not meant in an industrial or technical meaning but in the original Latin meaning of ‘to create and to reveal something’, ‘bringing out something’, or ‘to bring up something’.

  2. 2.

    In German, the nouns ‘Bearbeitungshilfe’ and ‘Veranschaulichungsmittel’.

References

  • Aebli, H. (1963). Psychologische Didaktik. Didaktische Auswertung der Psychologie von Jean Piaget. Stuttgart: Klett.

    Google Scholar 

  • Ashcraft, M. H. (1983). Procedural knowledge versus fact retrieval in mental arithmetic: A reply to Baroody. Developmental review, 3(2), 231–235.

    Article  Google Scholar 

  • Ashcraft, M. H. (1985). Is it farfetched that some of us remember our arithmetic facts? Journal for Research in Mathematics Education, 16(2), 99–105.

    Article  Google Scholar 

  • Ashcraft, M. H. (1990). Strategic mental processing in children’s mental arithmetic: A review and proposal. In D. F. Bjorklund (Ed.), Children’s strategies: Contemporary views of cognitive development (pp. 185–211). Hillsdale: Erlbaum.

    Google Scholar 

  • Atkinson, R. C., & Shiffrin, R. M. (1971). The control of short-term memory. Scientific American, 225, 82–90.

    Article  Google Scholar 

  • Baroody, A. J. (1983). The development of procedural knowledge: An alternative explanation for chronometric trends of mental arithmetic. Developmental Review, 3, 225–230.

    Article  Google Scholar 

  • Bartlett, F. (1932). Remembering. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bauersfeld, H. (1985). Ergebnisse und Probleme von Mikroanalysen mathematischen Unterrichts. In W. Dörfler, & R. Fischer (Eds.), Empirische Untersuchungen zum Lehren und Lernen von Mathematik (pp. 7–29). Vienna: Hoelder-Pichler-Tempsky.

    Google Scholar 

  • Cobb, P., Yackel, E., & Wood, T. (1992). A constructivist alternative to the representational view of mind in mathematics education. Journal for Research in Mathematics Education, 23(1), 2–33.

    Article  Google Scholar 

  • Davis, E. J. (1978). Suggestions for teaching the basic facts of arithmetic. In M. N. Suydam & R. E. Reys (Eds.), Developing computational skills. Reston: NCTM. (Yearbook).

    Google Scholar 

  • Ebbinghaus, H. (1885). Über das Gedächtnis: Untersuchungen zur experimentellen Psychologie. Darmstadt: WBG (Wiss. Buchges.), 2011, Neuausg., (Nachdr.) der 1. Aufl., (Leipzig, Duncker & Humblot), 1885/ mit einem Vorw. von Mark Galliker.

    Google Scholar 

  • Erlwanger, S. H. (1973). Benny’s conception of rules and answers in IPI Mathematics. In T. P. Carpenter, J. A. Dossey & J. L. Koehler (Eds.), Classics in mathematics education research (pp. 48–58). Reston: NCTM.

    Google Scholar 

  • Freudenthal, H. (1984). Memoriseren. In W. Bartjens (Ed.), Tijdschrift voor reken-wiskundeonderwijs in de basisschool (Vol. 3, Issue 2, pp 124–125). Enschede: SLO.

    Google Scholar 

  • Freudenthal, H. (1987). Didactical phenomenology of mathematical structures. Dordrecht: Reidel.

    Google Scholar 

  • Freudenthal, H. (1991). Revisiting mathematics education. China Lectures. Dordrecht: Kluwer.

    Google Scholar 

  • Gerlach, A. (1914). Schöne Rechenstunden. Bd. 1. Leipzig: Quelle und Meyer.

    Google Scholar 

  • Ginsburg, H. (1977). Children’s arithmetic, the learning process. New York: D. van Nostrand.

    Google Scholar 

  • Gravemeijer, K. P. E. (1994). Developing realistic mathematics education. Utrecht: CDbeta.

    Google Scholar 

  • Gravemeijer, K., Bowers, J., & Stephan, M. (2003). A hypothetical learning trajectory on measurement and flexible arithmetic. Journal for Research in Mathematics Education, 12, 51–66. (Monograph; Supporting Students’ Development of Measuring Conceptions: Analyzing Students’ Learning in Social Context 2003).

    Google Scholar 

  • Heege, H. ter (1986). Een goed product. Onderzoek en ontwikkeling ten behoeve van een leergang vermenigvuldigen. Utrecht: Rijksuniversiteit.

    Google Scholar 

  • Heinze, A., Star, A., & Verschaffel, L. (2009). Flexible/adaptive use of strategies and representations in mathematics education. ZDM Mathematics Education, 41(5), 535–540.

    Article  Google Scholar 

  • Hennecke, M., Hoos, M., Kreutzkamp, Th., Winter, K., & Wolpers, H. (2002). Mathematik heute: Unterrichtssoftware Bruchrechnung, Diagnostisches Lehr-Lern-System zur Bruchrechnung für das Lehrwerk “Mathematik heute”. Hannover: Schroedel.

    Google Scholar 

  • Heuvel-Panhuizen, M. Van den (1996). Assessment and realistic mathematics education. Utrecht: CDbeta.

    Google Scholar 

  • Heuvel-Panhuizen, M. Van den (Ed.). (2008). Children learn mathematics. Rotterdam: Sense.

    Google Scholar 

  • Hofe, R. vom. (1995). Grundvorstellungen mathematischer Inhalte. Heidelberg: Spektrum.

    Google Scholar 

  • Kleene, S. (1952). Introduction to metamathematics. New York: North-Holland.

    Google Scholar 

  • Klep, J., & Gilissen, L. (1986). Computerhilfe beim Erlernen des Einmaleins. Mathematik lehren, 18, 17–20.

    Article  Google Scholar 

  • Klep, J., & Gilissen, L. (1987). Een wereld rond tafels. Zeist: NIB. (Computer program and educational manual).

    Google Scholar 

  • Klep, J. (1998). Arithmeticus, Simulatie van wiskundige bekwaamheid. Tilburg: Zwijsen.

    Google Scholar 

  • Klep, J., & Spekken, G. (1998). Plato en de Rekenspiegel. Tilburg: Zwijsen. (Educational software).

    Google Scholar 

  • Klep, J. (2000). Arithmeticus: A DPS-based model for arithmetical competence. Journal of Interactive Learning Research, 11(3), 465–484. (Charlottesville: AACE).

    Google Scholar 

  • Klep, J. (2002). The exit of textbooks, the rise of flexible educational media. In S. Selander, & M. Tholey (Eds.), New educational media and textbooks. The 2nd IARTEM volume (Vol. 9). Stockholm: Stockholm Library of Curriculum Studies.

    Google Scholar 

  • Merritt, D. (1995–2013). Amzi!, Logic Server. Amzi! inc., www.Amzi.com.

  • Müller, G. E. (1911). Zur Analyse der Gedächtnistätigkeit und des Vorstellungsverlaufes. Leipzig: J. A. Barth.

    Google Scholar 

  • Neisser, U. (1982). Memory observed: Remembering in natural contexts. San Francisco: W. H. Freeman.

    Google Scholar 

  • Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Padberg, F., & Benz, C. (2011). Didaktik der Arithmetik für Lehrerausbildung und Lehrerfortbildung. Heidelberg: Spektrum.

    Google Scholar 

  • Parreren, C. F. van (1960). Psychologie van het leren I. Deventer: van Loghum Slaterus.

    Google Scholar 

  • Piaget, J. (1972). Theorien und Methoden der modernen Erziehung. Vienna: Fischer.

    Google Scholar 

  • Piaget, J. (1992). Einführung in die genetische Erkenntnistheorie (5. Aufl.). Frankfurt: Suhrkamp.

    Google Scholar 

  • Radatz, H., & Schipper, W. (1983). Handbuch für den Mathematikunterricht an Grundschulen. Hannover: Schrödel.

    Google Scholar 

  • Schipper, W. (2009). Handbuch für den Mathematikunterricht an Grundschulen. Braunschweig: Schroedel.

    Google Scholar 

  • Skemp, R. R. (1978). Relational understanding and instrumental understanding. Arithmetic Teacher, 26(3), 9–15.

    Google Scholar 

  • Thornton, C. A. (1978). Emphasising thinking strategies in basic fact instruction. Journal for Research in Mathematics Education, 9(2), 214–227.

    Article  Google Scholar 

  • Threlfall, J. (2009). Strategies and flexibility in mental calculation. ZDM Mathematics Education, 41, 541–555.

    Article  Google Scholar 

  • Treffers, A. (1987). Three dimensions: A model of goal and theory description in mathematics instruction – The Wiskobas project. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Turing, A. (1948). Intelligent machinery. (Reprinted in: Evans, C.R. & Robertson A.D.J. (Eds.). Cybernetics. Baltimore: University Park Press 1968.).

    Google Scholar 

  • Wittmann, E. Ch., & Müller, G. N. (1993). Handbuch produktiver Rechenübungen (Bd. 1). Vom Einspluseins zum Einmaleins. Stuttgart: Klett.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost Klep .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Klep, J. (2014). Transformation as a Fundamental Concept in Arithmetical Competence Modelling: An Example of Informatical Educational Science. In: Rezat, S., Hattermann, M., Peter-Koop, A. (eds) Transformation - A Fundamental Idea of Mathematics Education. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3489-4_17

Download citation

Publish with us

Policies and ethics