Skip to main content

Depletion of mtDNA with MMA: SUCLA2 and SUCLG1

  • Chapter
  • First Online:
Mitochondrial Disorders Caused by Nuclear Genes

Abstract

Mitochondrial depletion syndromes (MDS) are a class of mitochondrial diseases characterized by reduction of mitochondrial DNA (mtDNA) content in muscle and/or liver as well as encephalomyopathy or hepatoencephalopathy. Mutations in SUCLG1 or SUCLA2, which encode the a and the ADP-specific b isoforms, respectively, of Succinyl-CoA Synthetase (SCS) and cause MDS associated with mild methylmalonic acidemia. SCS deficiency is speculated to cause mtDNA depletion through perturbation of mitochondrial nucleotide pools by disruption of its interaction with mitochondrial nucleotide diphosphate kinase (NDPK). Development and study of models of SCS deficiency are required to better understand the pathogenesis of SCS-dependent MDS and to develop novel therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bereiter-Hahn J, Voth M (1994) Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27(3):198–219

    Article  PubMed  CAS  Google Scholar 

  2. Rambold AS, Lippincott-Schwartz J (2011) Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle 10(23):4032–4038

    Article  PubMed  CAS  Google Scholar 

  3. Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Sci 333(6046):1109–1112

    Article  CAS  Google Scholar 

  4. Parone P, Priault M, James D, Nothwehr SF, Martinou JC (2003) Apoptosis: Bombarding the mitochondria. Essays Biochem 39:41–51

    PubMed  CAS  Google Scholar 

  5. Bereiter-Hahn J, Jendrach M (2010) Mitochondrial dynamics. Int Rev Cell Mol Biol 284:1–65

    Article  PubMed  CAS  Google Scholar 

  6. Suzuki T, Nagao A (2011) Human mitochondrial tRNAs: Biogenesis, function, structural aspects, and diseases. Annu Rev Genet 45:299–329

    Article  PubMed  CAS  Google Scholar 

  7. O’Brien TW (2003) Properties of human mitochondrial ribosomes. IUBMB Life 55(9):505–513

    Article  PubMed  Google Scholar 

  8. Pagliarini DJ, Calvo SE, Chang B et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134(1):112–123

    Article  PubMed  CAS  Google Scholar 

  9. Spinazzola A, Invernizzi F, Carrara F et al (2009) Clinical and molecular features of mitochondrial DNA depletion syndromes. J Inherit Metab Dis 32(2):143–158

    Article  PubMed  CAS  Google Scholar 

  10. Buck D, Spencer ME, Guest JR (1985) Primary structure of the succinyl-CoA synthetase of Escherichia coli. Biochem 24(22):6245–6252

    Article  CAS  Google Scholar 

  11. Weitzman PD, Kinghorn HA (1978) Occurrence of ‘large’ or ‘small’ forms of succinate thiokinase in diverse organisms. FEBS Lett 88(2):255–258

    Article  PubMed  CAS  Google Scholar 

  12. Joyce MA, Fraser ME, James MN, Bridger WA, Wolodko WT (2000) ADP-binding site of Escherichia coli succinyl-CoA synthetase revealed by x-ray crystallography. Biochem 39(1):17–25

    Article  CAS  Google Scholar 

  13. Fraser ME, James MN, Bridger WA, Wolodko WT (1999) A detailed structural description of Escherichia coli succinyl-CoA synthetase. J Mol Biol 285(4):1633–1653

    Article  PubMed  CAS  Google Scholar 

  14. Fraser ME, Joyce MA, Ryan DG, Wolodko WT (2002) Two glutamate residues, Glu 208 alpha and Glu 197 beta, are crucial for phosphorylation and dephosphorylation of the active-site histidine residue in succinyl-CoA synthetase. Biochem 41(2):537–546

    Article  CAS  Google Scholar 

  15. Johnson JD, Mehus JG, Tews K, Milavetz BI, Lambeth DO (1998) Genetic evidence for the expression of ATP- and GTP-specific succinyl-CoA synthetases in multicellular eucaryotes. J Biol Chem 273(42):27580–27586

    Article  PubMed  CAS  Google Scholar 

  16. Bailey DL, Wolodko WT, Bridger WA (1993) Cloning, characterization, and expression of the beta subunit of pig heart succinyl-CoA synthetase. Protein Sci 2(8):1255–1262

    Article  PubMed  CAS  Google Scholar 

  17. Sanadi DR, Gibson M, Ayengar P (1954) Guanosine triphosphate, the primary product of phosphorylation coupled to the breakdown of succinyl coenzyme A. Biochim Biophys Acta 14(3):434–436

    Article  PubMed  CAS  Google Scholar 

  18. Ayengar P, Gibson DM, Sanadi DR (1954) A new coenzyme for phosphorylation. Biochim Biophys Acta 13(2):309–310

    Article  PubMed  CAS  Google Scholar 

  19. Hansford RG (1973) An adenine nucleotide-linked succinic thiokinase of animal origin. FEBS Lett 31(3):317–320

    Article  PubMed  CAS  Google Scholar 

  20. Allen DA, Ottaway JH (1986) Succinate thiokinase in pigeon breast muscle mitochondria. FEBS Lett 194(1):171–175

    Article  PubMed  CAS  Google Scholar 

  21. Severin SE, Feigina MM (1976) alpha-keto acid dehydrogenases and acyl-CoA synthetases from pigeon breast muscle. Adv Enzyme Regul 15:1–21

    Article  PubMed  CAS  Google Scholar 

  22. Johnson JD, Muhonen WW, Lambeth DO (1998) Characterization of the ATP- and GTP-specific succinyl-CoA synthetases in pigeon. The enzymes incorporate the same alpha-subunit. J Biol Chem 273(42):27573–27579

    Article  PubMed  CAS  Google Scholar 

  23. Lambeth DO, Tews KN, Adkins S, Frohlich D, Milavetz BI (2004) Expression of two succinyl-CoA synthetases with different nucleotide specificities in mammalian tissues. J Biol Chem 279(35):36621–36624

    Article  PubMed  CAS  Google Scholar 

  24. Elpeleg O, Miller C, Hershkovitz E et al (2005) Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. Am J Hum Genet 76(6):1081–1086

    Article  PubMed  CAS  Google Scholar 

  25. Carrozzo R, Dionisi-Vici C, Steuerwald U et al (2007) SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain 130(Pt 3):862–874

    Article  PubMed  Google Scholar 

  26. Ostergaard E, Hansen FJ, Sorensen N et al (2007) Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain 130(Pt 3):853–861

    Article  PubMed  Google Scholar 

  27. Morava E, Steuerwald U, Carrozzo R et al (2009) Dystonia and deafness due to SUCLA2 defect; Clinical course and biochemical markers in 16 children. Mitochondrion 9(6):438–442

    Article  PubMed  CAS  Google Scholar 

  28. Poulton J, Hirano M, Spinazzola A et al (2009) Collated mutations in mitochondrial DNA (mtDNA) depletion syndrome (excluding the mitochondrial gamma polymerase, POLG1). Biochim Biophys Acta 1792(12):1109–1112

    Article  PubMed  CAS  Google Scholar 

  29. Ostergaard E, Christensen E, Kristensen E et al (2007) Deficiency of the alpha subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion. Am J Hum Genet 81(2):383–387

    Article  PubMed  CAS  Google Scholar 

  30. Sakamoto O, Ohura T, Murayama K et al (2011) Neonatal lactic acidosis with methylmalonic aciduria due to novel mutations in the SUCLG1 gene. Pediatr Int 53(6):921–925

    Article  PubMed  Google Scholar 

  31. Randolph LM, Jackson HA, Wang J et al (2011) Fatal infantile lactic acidosis and a novel homozygous mutation in the SUCLG1 gene: A mitochondrial DNA depletion disorder. Mol Genet Metab 102(2):149–152

    Article  PubMed  CAS  Google Scholar 

  32. Rouzier C, Le Guedard-Mereuze S, Fragaki K et al (2010) The severity of phenotype linked to SUCLG1 mutations could be correlated with residual amount of SUCLG1 protein. J Med Genet 47(10):670–676

    Article  PubMed  CAS  Google Scholar 

  33. Van Hove JL, Saenz MS, Thomas JA et al (2010) Succinyl-CoA ligase deficiency: a mitochondrial hepatoencephalomyopathy. Pediatr Res 68(2):159–164

    Article  PubMed  Google Scholar 

  34. Rivera H, Merinero B, Martinez-Pardo M et al (2010) Marked mitochondrial DNA depletion associated with a novel SUCLG1 gene mutation resulting in lethal neonatal acidosis, multi-organ failure, and interrupted aortic arch. Mitochondrion 10(4):362–368

    Article  PubMed  CAS  Google Scholar 

  35. Valayannopoulos V, Haudry C, Serre V et al (2010) New SUCLG1 patients expanding the phenotypic spectrum of this rare cause of mild methylmalonic aciduria. Mitochondrion 10(4):335–341

    Article  PubMed  CAS  Google Scholar 

  36. Ostergaard E, Schwartz M, Batbayli M et al (2010) A novel missense mutation in SUCLG1 associated with mitochondrial DNA depletion, encephalomyopathic form, with methylmalonic aciduria. Eur J Pediatr 169(2):201–205

    Article  PubMed  Google Scholar 

  37. Kowluru A, Tannous M, Chen HQ (2002) Localization and characterization of the mitochondrial isoform of the nucleoside diphosphate kinase in the pancreatic beta cell: evidence for its complexation with mitochondrial succinyl-CoA synthetase. Arch Biochem Biophys 398(2):160–169

    Article  PubMed  CAS  Google Scholar 

  38. Miller C, Wang L, Ostergaard E, Dan P, Saada A (2011) The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion. Biochim Biophys Acta 1812(5):625–629

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett H. Graham M.D. Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hawkins, N., Graham, B. (2013). Depletion of mtDNA with MMA: SUCLA2 and SUCLG1 . In: Wong, LJ. (eds) Mitochondrial Disorders Caused by Nuclear Genes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3722-2_10

Download citation

Publish with us

Policies and ethics