Skip to main content

Face Perception

  • Chapter
  • First Online:
Neurophenotypes

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

  • 737 Accesses

Abstract

Face perception is a critical and complex cognitive operation, and it poses unique the cognitive demands. This chapter addresses the question of whether face perception can be viewed as a cognitive phenotype. Evidence from neurophysiological and neuropsychological studies are summarized that reflect specialization of parts of the visual system for face processing, for example, face-tuned neurons in the superior temporal sulcus of non-human primates, and cortical regions associated with prosopagnosia in humans. Data from cognitive neuroscience (especially functional imaging studies) are presented, illustrating that many distinct brain regions show that activity in response to faces though the lateral fusiform gyrus or “fusiform face area” (FFA) shows a particularly robust response. Current interpretations of FFA activity and how it may be functionally parsed out from the activity of the occipital fusiform area and anterior temporal lobe are then laid out, and this raises the tricky question of what differs between the perception faces and non-face objects as may be expressed along these neural centers. Our discussion on face perception as a potential cognitive phenotype suggests that the domain of operation of the face perception neural mechanism is not all or none. We point instead to a more general purpose visual learning system that happens to be critical in face perception and possibly most fully realized in face perception. The processes of face perception are especially illustrative of difficulties that can be inherent in establishing evidence for a domain-specific cognitive phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bentin S, Allison T, Puce A et al (1996) Electrophysiological studies of face perception in humans. J Cogn Neurosci 8(6):551–565

    Article  PubMed  PubMed Central  Google Scholar 

  • Bornstein B (1963) Prosopagnosia. In: Halpern L (ed) Problems of dynamic neurology. Hebrew University Hadassah Medical School, Jerusalem, pp 283–318

    Google Scholar 

  • Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46:369–384

    PubMed  Google Scholar 

  • Bukach CM, Philips WS, Gauthier I (2010) Limits of generalization between categories and implications for theories of category specificity. Atten Percept Psychophys 72:1865–1874

    Google Scholar 

  • Bukach CM, Vickery T, Kinka D, Gauthier I (2012) Training experts: individuation without naming is worth it. J Exp Psychol Hum Percept Perform 38:14–17

    Article  PubMed  Google Scholar 

  • Bushnell IW, Sai F, Mullin JT (1989) Neonatal recognition of the mother’s face. Br J Dev Psychol 7:3–15

    Article  Google Scholar 

  • Carey S, Diamond R (1977) From piecemeal to configurational representation of faces. Science 195:312–314

    Article  PubMed  Google Scholar 

  • Cheung OS, Richler JJ, Palmeri TJ, Gauthier I (2008) Revisiting the role of spatial frequencies in the holistic processing of faces. J Exp Psychol Hum Percept Perform 34:1327–1336

    Google Scholar 

  • Curby KM, Gauthier I (2009) The temporal advantage for individuating objects of expertise: perceptual expertise is an early riser. J Vis 9:1–13

    Google Scholar 

  • Damasio AR, Damasio H, Van Hoesen GW (1982) Prosopagnosia: anatomical basis and behavioral mechanisms. Neurology 32:331–341

    Article  PubMed  Google Scholar 

  • De Haan EHF (1999) A familial factor in the development of face recognition deficits. J Clin Exp Neuropsychol 21:312–315

    Article  PubMed  Google Scholar 

  • Dennett HW, McKone E, Tavashami R et al (2011) The Cambridge car memory test: a task matched in format to the Cambridge Face Memory Test, with norms, reliability, sex differences, dissociations from face memory, and expertise effects. Behav Res Methods 44(2):587–605

    Article  Google Scholar 

  • Easterbrook MA, Kisilevsky BS, Hains SMJ, Muir DW (1999) Faceness or complexity: evidence from newborn visual tracking of facelike stimuli. Infant Behav Dev 22(1):17–35

    Article  Google Scholar 

  • Eimer M (1998) Does the face-specific N170 component reflect the activity of a specialized eye processor? NeuroReport 9:2945–2948

    Article  PubMed  Google Scholar 

  • Eimer M, McCarthy RA (1999) Prosopagnosia and structural encoding of faces: evidence from event-related potentials. NeuroReport 10:255–259

    Article  PubMed  Google Scholar 

  • Engel SA, Harley EM, Pope WB et al (2009) Activity in the fusiform face area supports expert perception in radiologists and does not depend upon holistic processing of images. pp 72630M-72630M-72638

    Google Scholar 

  • Ewbank MP, Henson RN, Rowe JB et al (2012) Different neural mechanisms within occipitotemporal cortex underlie repetition suppression across same and different-size faces. Cereb Cortex. Epub ahead of print

    Google Scholar 

  • Farah MJ (1990) Visual Agnosia: disorders of object recognition and what they tell us about normal vision. MIT Press, Cambridge

    Google Scholar 

  • Farah MJ, Wilson KD, Drain M, Tanaka JN (1998) What is “special” about face perception? Psychol Rev 105:482–498

    Article  PubMed  Google Scholar 

  • Field TM, Cohen D, Garcia R, Greenberg R (1984) Mother-stranger face discrimination by the newborn. Infant Behav Dev 7:19–25

    Article  Google Scholar 

  • Freiwald WA, Tsao DY, Livingstone MS (2009) A face feature space in the macaque temporal lobe. Nat Neurosci 12:1187–1196

    Article  PubMed  PubMed Central  Google Scholar 

  • Furl N, Garrido L, Dolan RJ et al (2011) Fusiform gyrus face selectivity relates to individual differences in face recognition ability. J Cogn Neurosci 23:1723–1740

    Article  PubMed  Google Scholar 

  • Garrido L, Furl N, Draganski B et al (2009) Voxel-based morphometry reveals reduced grey matter volume in the temporal cortex of developmental prosopagnosics. Brain 132:3443–3455

    Article  PubMed  PubMed Central  Google Scholar 

  • Gauthier I, Behrmann M, Tarr MJ (1999a) Can face recognition really be dissociated from object recognition? J Cogn Neurosci 11:349–370

    Article  PubMed  Google Scholar 

  • Gauthier I, Tarr MJ, Anderson AW et al (1999b) Activation of the middle fusiform “face area” increases with expertise in recognizing novel objects. Nat Neurosci 2:568–573

    Article  PubMed  Google Scholar 

  • Gauthier I, Curran T, Curby KM, Collins D (2003) Perceptual interference supports a non-modular account of face processing. Nat Neurosci 6:428–432

    Article  PubMed  Google Scholar 

  • Gauthier I, Tarr MJ, Moylan J et al (2000) The fusiform “face area” is part of a network that processes faces at the individual level. J Cogn Neurosci 12:495–504

    Article  PubMed  Google Scholar 

  • Gauthier I, Williams P, Tarr MJ, Tanaka J (1998) Training “greeble” experts: a framework for studying expert object recognition processes. Vis Res 38:2401–2428

    Article  PubMed  Google Scholar 

  • Germine LT, Duchaine B, Nakayama K (2011) Where cognitive development and aging meet: face learning ability peaks after age 30. Cognition 118:201–210

    Article  PubMed  Google Scholar 

  • Goren CC, Sarty M, Wu PY (1975) Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56:544–549

    PubMed  Google Scholar 

  • Grelotti DJ, Klin AJ, Gauthier I, Skudlarski P, Cohen DJ, Gore JC, Volkmar FR, Schultz RT (2005) FMRI activation of the fusiform gyrus and amygdala to cartoon characters but not to faces in a boy with autism. Neuropsychologia 43(3):373–385

    Google Scholar 

  • Gross CG, Rocha-Miranda CE, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the Macaque. J Neurophysiol 35:96–111

    PubMed  Google Scholar 

  • Grueter T, Grueter M, Carbon CC (2008) Neural and genetic foundations of face recognition and prosopagnosia. J Neuropsychol 2:79–97

    Article  Google Scholar 

  • Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Cogn Sci 4:223–233

    Article  PubMed  Google Scholar 

  • Johnson MH, Dziurawiec S, Ellis H, Morton J (1991) Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition 40:1–19

    Article  PubMed  Google Scholar 

  • Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311

    PubMed  Google Scholar 

  • Kanwisher N, Tong F, Nakayama K (1998) The effect of face inversion on the human fusiform face area. Cognition 68:B1–B11

    Article  PubMed  Google Scholar 

  • Kriegskorte N, Formisano E, Sorger B, Goebel R (2007) Individual faces elicit distinct response patterns in human anterior temporal cortex. Proc Natl Acad Sci U S A 104:20600–20605

    Article  Google Scholar 

  • Leder H, Bruce V (2000) When inverted faces are recognized: The role of configural information in face recognition. Q J Exp Psychol 53:513–536

    Google Scholar 

  • Maurer D, Young RE (1983) Newborn’s following of natural and distorted arrangements of facial features. Infant Behav Dev 6:127–131

    Article  Google Scholar 

  • McConachie HR (1976) Developmental prosopagnosia: a single case report. Cortex 12:76–82

    Article  PubMed  Google Scholar 

  • McGugin RW, Gatenby C, Gore JC, Gauthier I (Submitted A) High-resolution imaging of expertise reveals reliable object selectivity in the FFA related to perceptual performance

    Google Scholar 

  • McGugin RW, Richler JJ, Herzmann G et al (Submitted B) The Vanderbilt Expertise Test and the contribution of general object recognition abilities to face recognition

    Google Scholar 

  • McGugin RW, McKeeff TJ, Tong F, Gauthier I (2011a) Irrelevant objects of expertise compete with faces during visual search. Atten Percept Psychophys 73:309–317

    Google Scholar 

  • McGugin RW, Tanaka JW, Lebrecht S et al (2011b) Race-specific perceptual discrimination training improvement following short individuation training with faces. Cogn Sci 35:330–347

    Article  PubMed  Google Scholar 

  • McKeeff TJ, McGugin RW, Tong F, Gauthier I (2010) Expertise increases the functional overlap between face and object perception. Cognition 117:355–360

    Article  PubMed  PubMed Central  Google Scholar 

  • Morton J, Johnson MH (1991) CONSPEC and CONLERN: a two-process theory of infant face recognition. Psychol Rev 98:164–181

    Article  PubMed  Google Scholar 

  • Moscovitch M, Winocur G, Behrmann M (1997) What is special about face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition. J Cogn Neurosci 9:555–604

    Article  PubMed  Google Scholar 

  • Nelson CA (2001) The development and neural bases of face recognition. Infant Child Dev 10:3–18

    Article  Google Scholar 

  • Perrett DI, Rolls ET, Caan W (1982) Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res 47:329–342

    Article  PubMed  Google Scholar 

  • Pinsk MA, Arcaro M, Weiner KS et al (2009) Neural representations of faces and body parts in Macaque and human cortex: a comparative fMRI study. J Neurophysiol 101:2581–2600

    Article  PubMed  PubMed Central  Google Scholar 

  • Pitcher D, Duchaine B, Walsh V et al (2011) The role of lateral occipital face and object areas in the face inversion effect. Neuropsychologia 49:3448–3453

    Article  PubMed  Google Scholar 

  • Puce A, Allison T, Bentin S (1998) Temporal cortex activation in humans viewing eye and mouth movements. J Neurosci 18:2188–2199

    PubMed  Google Scholar 

  • Puce A, Allison T, Gore JC, McCarthy G (1995) Face-sensitive regions in human extrastriate cortex studied by functional MRI. J Neurophysiol 74:1192–1199

    PubMed  Google Scholar 

  • Rhodes G, Brake S, Atkinson AP (1993) What’s lost in inverted faces? Cognition 47:25–57

    Article  PubMed  Google Scholar 

  • Richler JJ, Cheung OS, Gauthier I (2011a) Holistic processing predicts face recognition. Psychol Sci 22:464–471

    Article  PubMed  PubMed Central  Google Scholar 

  • Richler JJ, Cheung OS, Gauthier I (2011b) Beliefs alter holistic face processing… if response bias is not taken into account. J Vis 11:1–13

    Article  Google Scholar 

  • Richler JJ, Mack ML, Palmeri TJ, Gauthier I (2011c) Inverted faces are (eventually) processed holistically. Vis Res 51:333–342

    Google Scholar 

  • Rosch E, Mervis CB, Gray WD et al (1976) Basic objects in natural categories. Cogn Psychol 8:382–439

    Article  Google Scholar 

  • Rossion B, Gauthier I, Tarr MJ et al (2000) The N170 occipito-temporal component is enhanced and delayed to inverted faces but not to inverted objects: an electrophysiological account of facespecific processes in the human brain. NeuroReport 11:69–74

    Article  PubMed  Google Scholar 

  • Rossion B, Kung CC, Tarr MJ (2004) Visual expertise with nonface objects leads to competition with the early perceptual processing of faces in the human occipitotemporal cortex. Proc Natl Acad Sci U S A 101:14521–14526

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz RT (2005) Developmental deficits in social perception in Autism: the role of the amygdala and fusiform face area. Int J Dev Neurosci 23:125–141

    Article  PubMed  Google Scholar 

  • Searcy JH, Bartlett JC (1996) Inversion and processing of component and spatial-relational information in faces. J Exp Psychol Hum Percept Perform 22:904–915

    Google Scholar 

  • Sekuler AB, Gaspar CM, Gold JM, Bennett PJ (2004) Inversion leads to quantitative, not qualitative, changes in face processing. Curr Biol 14:391–396

    Google Scholar 

  • Sergent J, Ohta S, MacDonald B (1992) Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain 115:15–36

    Article  PubMed  Google Scholar 

  • Simion F, Leo I, Turati C et al (2007) How face specialization emerges in the first months of life. Prog Brain Res 164:169–185

    Article  PubMed  Google Scholar 

  • Slater A, Kirby R (1998) Innate and learned perceptual abilities in the newborn infant. Exp Brain Res 123:90–94

    Article  PubMed  Google Scholar 

  • Tanaka JW, Taylor M (1991) Object categories and expertise: is the basic level in the eye of the beholder? Cogn Psychol 23:457–482

    Article  Google Scholar 

  • Thompson P (1980) Margaret Thatcher: a new illusion. Perception 9:483–484

    Article  PubMed  Google Scholar 

  • Thorndike RM, Cunningham GK, Thorndike RL, Hagen EP (1991) Measurement and evaluation. In: Psychology and education, 5th edn. Macmillan, New York

    Google Scholar 

  • Valentine T, Bruce V (1986) The effect of race, inversion and encoding activity upon face recognition. Acta Psychol 61:259–273

    Article  Google Scholar 

  • Valenza E, Simion F, Cassia VM, Umiltà C (1996) Face preference at birth. J Exp Psychol Hum Percept Perform 22:892–903

    Article  PubMed  Google Scholar 

  • Weiner KS, Grill-Spector K (2011) Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle. Psychol Res 77(1):74–97

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilmer JB, Germine L, Chabris CF et al (2010) Human face recognition ability is specific and highly heritable. Proc Natl Acad Sci U S A 107:5238–5241

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong YK, Twedt E, Sheinberg D, Gauthier I (2010) Does Thompson’s Thatcher effect reflect a face-specific mechanism? Perception 1125–1141

    Google Scholar 

  • Wong ACN, Palmeri TJ, Gauthier I (2009a) Conditions for facelike expertise with objects: becoming a Ziggerin expert—but which type? Psychol Sci 20:1108–1117

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong ACN, Palmeri TJ, Rogers BT et al (2009b) Beyond shape: how you learn about objects affects how they are represented in visual cortex. PLoS ONE 4:e8405

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y (2005) Revisiting the role of the fusiform face area in visual expertise. Cerebr Cortex 15:1234–1242

    Article  Google Scholar 

  • Yin RK (1969) Looking at upside-down faces. J Exp Psychol 81:141–145

    Article  Google Scholar 

  • Young AW, Hellawell D, Hay DC (1987) Configurational information in face perception. Perception 16:747–759

    Article  PubMed  Google Scholar 

  • Yovel G, Kanwisher N (2005) The neural basis of the behavioral face-inversion effect. Curr Biol 15:2256–2262

    Google Scholar 

  • Zhu Q, Song Y, Hu S et al (2010) Heritability of the specific cognitive ability of face perception. Curr Biol 20:1–6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Richler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Richler, J., Gauthier, I. (2016). Face Perception. In: Jagaroo, V., Santangelo, S. (eds) Neurophenotypes. Innovations in Cognitive Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3846-5_11

Download citation

Publish with us

Policies and ethics