Skip to main content

Engineering Through Mode Shaping and Lithographical Nanofabrication of Ultrasensitive Nano-plasmonic Sensors for Molecular Detection

  • Chapter
  • First Online:
Nanoplasmonic Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 2026 Accesses

Abstract

The resonance change of plasmonic nanostructures to a small variation of the shallow refractive index as induced by the binding of molecules to the metal surface determines the sensitivity of plasmonic sensors. The magnitude of this change is strongly determined by a number of factors including dielectric constant of the metal at the working wavelength, refractive indices of analyte, and surroundings [J Phys Chem B 109:21556–21565, 2005], but also the spatial overlap between the region of local refractive index change and the plasmon mode. In this chapter we discuss how the plasmon modes of lithographically prepared plasmonic nanostructures can be accurately engineered to design bio-chemical sensors with improved sensitivities.

We first describe how metal nanostructures can be designed to control the confinement of light modes down to the nanometer scale. Using 3D calculations based on the finite element method, we then discuss the influence on the sensitivity of the nanostructure geometry and location of the sensed molecule. Finally, we present experimental results that demonstrate this enhanced sensitivity to the detection of small molecules in arrays of gold dimers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller MM, Lazarides AA. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B. 2005;109:21556–65.

    Article  CAS  Google Scholar 

  2. Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–97.

    Article  CAS  Google Scholar 

  3. Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir. 2006;22:32–41.

    Article  Google Scholar 

  4. Unger A, Kreiter M. Analyzing the performance of plasmonic resonators for dielectric sensing. J Phys Chem C. 2009;113:12243–51.

    Article  CAS  Google Scholar 

  5. Andreas B. Dahlin and Magnus P. Jonsson, Performance of Nanoplasmonic Biosensors in A. Dmitriev (ed.), Nanoplasmonic Sensors, Integrated Analytical Systems. 2012

    Google Scholar 

  6. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc. 2001;123:1471–82.

    Article  CAS  Google Scholar 

  7. Barbillon G, Bijeon JL, Plain J, Lamy de la Chapelle M, Adam PM, Royer P. Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance. Surf Sci. 2007;601:5057–61.

    Article  CAS  Google Scholar 

  8. Kreno LE, Hupp JT, Van Duyne RP. Metal−organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal Chem. 2010;82(19):8042–6.

    Article  CAS  Google Scholar 

  9. Grigorenko AN, Gleeson HF, Zhang Y, Roberts NW, Sidorov AR, Panteleev AA. Antisymmetric plasmon resonance in coupled gold nanoparticles as a sensitive tool for detection of local index of refraction. Appl Phys Lett. 2006;88:124103.

    Article  Google Scholar 

  10. Haes AJ, Van Duyne RP. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc. 2002;124(35):10596–604.

    Article  CAS  Google Scholar 

  11. Chen S, Svedendahl M, Kall M, Gunnarsson L, Dimtriev A. Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics. Nanotechnology. 2009;20:434015.

    Article  CAS  Google Scholar 

  12. Barbillon G, Bijeon J-L, Lérondel G, Plain J, Royer P. Detection of chemical molecules with integrated plasmonics glass nanotips. Surf Sci. 2008;602:119–22.

    Article  Google Scholar 

  13. Aćimović SS, Kreuzer MP, González MU, Quidant R. Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano. 2009;3:1231–7.

    Article  Google Scholar 

  14. Xu H, Aizpurua J, Käll M, Apell P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E. 2000;62:4318–24.

    Article  CAS  Google Scholar 

  15. Ringler M, Klar TA, Schwemer A, Susha AS, Stehr J, Rasche G, Funk S, Borowski M, Nichtl A, Kurzinger K, Phillips RT, Feldman J. Moving nanoparticles with Raman scattering. Nanoletters. 2007;7(9):2753–7.

    Article  CAS  Google Scholar 

  16. Stockman MI. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett. 2004;93:137404.

    Article  Google Scholar 

  17. De Angelis F, Patrini M, Das G, Maksymov I, Galli M, Businaro L, Andreani LC, Di Fabrizio E. A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. Nano Lett. 2008;8:2321–7.

    Article  Google Scholar 

  18. Li K, Stockman MI, Bergman DJ. Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett. 2003;91:227402.

    Article  Google Scholar 

  19. Romero I, Aizpurua J, Bryant GW, GarcíaDeAbajo FJ. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt Express. 2006;14:9988–99.

    Article  Google Scholar 

  20. Kottmann J, Martin O. Retardation-induced plasmon resonances in coupled nanoparticles. Opt Lett. 2001;26:1096–8.

    Google Scholar 

  21. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P. Gold nanorods: synthesis, characterization and applications. Coord Chem Rev. 2005;249(17–18):1870–901.

    Article  Google Scholar 

  22. Malaquin L, Kraus T, Schmid H, Delamarche E, Wolf H. Controlled particle placement through convective and capillary assembly. Langmuir. 2007;23:11513–21.

    Article  CAS  Google Scholar 

  23. Biswas A, Wang T, Biris AS. single metal nanoparticle spectroscopy: optical characterization of individual nanosystems for biomedical applications. Nanoscale. 2010;2:1560–72.

    Article  CAS  Google Scholar 

  24. Nehl CL, Liao H, Hafner JH. Optical properties of star-shaped gold nanoparticles. Nano Lett. 2006;6(4):683–8.

    Article  CAS  Google Scholar 

  25. Sannomiya T, Hafner C, Voros J. In situ sensing of single binding events by localized surface plasmon resonance. Nano Lett. 2008;8:3450–5.

    Article  CAS  Google Scholar 

  26. Becker J, Schubert O, Sönnichsen C. Gold nanoparticle growth monitored in situ using a novel fast optical single-particle spectroscopy method. Nano Lett. 2007;7(6):1664–9.

    Article  CAS  Google Scholar 

  27. Bingham JM, Willets KA, Shah NC, Andrews DQ, Van Duyne RP. Localized surface plasmon resonance imaging: simultaneous single nanoparticle spectroscopy and diffusional dynamics. J Phys Chem C. 2009;113(39):16839–42.

    Article  CAS  Google Scholar 

  28. Hicks EM, Zou S, Schatz GC, Spears KG, Van Duyne RP, Gunnarsson L, Rindzevicius T, Kasemo B, Käll M. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett. 2005;5:1065–70.

    Article  CAS  Google Scholar 

  29. Kravets VG, Schedin F, Grigorenko AN. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys Rev Lett. 2008;101:087403.

    Article  CAS  Google Scholar 

  30. Auguie B, Barnes WL. Collective resonances in gold nanoparticle arrays. Phys Rev Lett. 2008;101:143902.

    Article  Google Scholar 

  31. Jain PK, Huang W, El-Sayed MA. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 2007;7:2080–8.

    Article  CAS  Google Scholar 

  32. Zhang WH, Fischer H, Schmid T, Zenobi R, Martin OJF. Mode-selective surface-enhanced Raman spectroscopy using nanofabricated plasmonic dipole antennas. J Phys Chem C. 2009;113:14672–5.

    Article  CAS  Google Scholar 

  33. Smythe EJ, Cubukcu E, Capasso F. Optical properties of surface plasmon resonances of coupled metallic nanorods. Opt Express. 2007;15(12):7439–47.

    Article  Google Scholar 

  34. Graells S, Alcubilla R, Badenes G, Quidant R. Growth of plasmonic gold nanostructures by electron beam induced deposition. Appl Phys Lett. 2007;91:121112.

    Article  Google Scholar 

  35. Farahani JN, Pohl DW, Eisler HJ, Hecht B. Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys Rev Lett. 2005;95:017402.

    Article  CAS  Google Scholar 

  36. chapters 2–4

    Google Scholar 

  37. Chou SY, Krauss PR, Zhang W, Guo LJ, Zhuang L. Sub-10nm imprint lithography and applications. J Vac Sci Technol B. 1997;15:2897–904.

    Article  CAS  Google Scholar 

  38. Guo LJ. Nanoimprint lithography: methods and material requirements. Adv Mater. 2007;19:495–513.

    Article  CAS  Google Scholar 

  39. Zhdanov A, Kreuzer MP, Rao S, Fedyanin A, Ghenuche P, Quidant R, Petrov D. Detection of plasmon-enhanced luminescence fields from an optically manipulated pair of partially metal covered dielectric spheres. Opt Lett. 2008;33(23):2749–51.

    Article  Google Scholar 

  40. Fischer H, Martin OJF. Engineering the optical response of plasmonic nanoantennas. Opt Express. 2008;16:9144–54.

    Article  Google Scholar 

  41. Lereu AL, Sánchez-Mosteiro G, Ghenuche P, Quidant R, van Hulst NF. Individual gold dimers investigated by far- and near-field imaging. J Microsc. 2008;229:254–8.

    Article  CAS  Google Scholar 

  42. Schnell M, García-Etxarri A, Huber AJ, Crozier K, Aizpurua J, Hillenbrand R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat Photon. 2009;3:287–91.

    Article  CAS  Google Scholar 

  43. Bouhelier A, Bachelot R, Lerondel G, Kostcheev S, Royer P, Wiederrecht GP. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys Rev Lett. 2005;95:267405.

    Article  CAS  Google Scholar 

  44. Ghenuche P, Cherukulappurath S, Taminiau TH, van Hulst NF, Quidant R. Spectroscopic mode mapping of resonant plasmon nanoantennas. Phys Rev Lett. 2008;101:116805.

    Article  Google Scholar 

  45. Wissert MD, Ilin KS, Siegel M, Lemmer U, Eisler HJ. Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation. Nano Lett. 2010;10(10):4161–5.

    Google Scholar 

  46. Messinger BJ, von Raben KU, Chang RK, Barber PW. Local fields at the surface of noble-metal microspheres. Phys Rev B. 1981;24:649.

    Article  CAS  Google Scholar 

  47. Sheehan PE, Whitman LJ. Detection limits for nanoscale biosensors. Nano Lett. 2005;5(4):803–7.

    Article  CAS  Google Scholar 

  48. Ferreira J, Santos MJL, Rahman MM, Brolo AG, Gordon R, Sinton D, Girotto EM. Attomolar protein detection using in-hole surface plasmon resonance. J Am Chem Soc. 2009;131(2):436–7.

    Article  CAS  Google Scholar 

  49. Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, Gordon R, Sinton D. Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem. 2009;81:4308–11.

    Article  CAS  Google Scholar 

  50. Jonsson MP, Dahlin AB, Feuz L, Petronis A, Hook F. Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal Chem. 2010;82(5):2087–94.

    Article  CAS  Google Scholar 

  51. Enoch S, Quidant R, Badenes G. Optical sensing based on plasmon coupling in nanoparticle arrays. Opt Express. 2004;12:3422–7.

    Article  Google Scholar 

  52. Atay T, Song JH, Nurmikko AV. Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime. Nano Lett. 2004;4:1627–31.

    Article  CAS  Google Scholar 

  53. Fromm DP, Sundaramurthy A, Schuck PJ, Kino G, Moerner WE. Gap-dependent optical coupling of single bowtie nanoantenas resonant in the visible. Nano Lett. 2004;4:957–61.

    Article  CAS  Google Scholar 

  54. Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol. 2005;23:741–5.

    Article  Google Scholar 

  55. Huang W, Qian W, Jain PK, El-Sayed MA. The effect of plasmon field on the coherent lattice phonon oscillation in electron-beam fabricated gold nanoparticle pairs. Nano Lett. 2007;7(10):3227–34.

    Article  CAS  Google Scholar 

  56. Félidj N, Grand J, Laurent G, Aubard J, Lévi G, Hohenau A, Galler N, Aussenegg FR, Krenn JR. Multipolar surface plasmon peaks on gold nanotriangles. J Chem Phys. 2008;128:094702.

    Article  Google Scholar 

  57. Malmsten M. Ellipsometry studies of the effects of surface hydrophobicity on protein adsorption. Colloids Surf B. 1995;3:297–308.

    Article  CAS  Google Scholar 

  58. Fukuzaki S, Urano H, Nagata K. Adsorption of bovine serum albumin onto metal oxide surfaces. J Ferment Bioeng. 1996;81(2):163–7.

    Article  CAS  Google Scholar 

  59. Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir. 2005;21:9303–7.

    Article  CAS  Google Scholar 

  60. Thorsen T, Maerkl SJ, Quake SR. Microfluidic large-scale integration. Science. 2002;298(5593):580–4.

    Article  CAS  Google Scholar 

  61. Gerion D, Day G. Label-free and labeled technology for protein characterization and quantitation. Biopharm Int. 2010;23(9):38–45.

    CAS  Google Scholar 

  62. Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR. Optical properties of two interacting gold nanoparticles. Opt Commun. 2003;220:137–41.

    Article  CAS  Google Scholar 

  63. Jain PK, El-Sayed MA. Plasmonic coupling in noble metal nanostructures. Chem Phys Lett. 2010;487:153–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Quidant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aćimović, S.S., Kreuzer, M.P., Quidant, R. (2012). Engineering Through Mode Shaping and Lithographical Nanofabrication of Ultrasensitive Nano-plasmonic Sensors for Molecular Detection. In: Dmitriev, A. (eds) Nanoplasmonic Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3933-2_11

Download citation

Publish with us

Policies and ethics