Skip to main content

Green Engineering: Integration of Green Chemistry, Pollution Prevention, and Risk-Based Considerations

  • Chapter
  • First Online:
Handbook of Industrial Chemistry and Biotechnology

Abstract

Literature sources on green chemistry and green engineering are numerous. The objective of this chapter is to familiarize readers with some of the green engineering and chemistry concepts, approaches, and tools. In order to do this, the chapter is organized into five sections as follows.

US EPA. The chapter does not represent the views of the US EPA or the US Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 419.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Adapted from Green Chemistry: Theory and Practice [3].

  2. 2.

    The preliminary principles forged at this multidisciplinary conference are intended for engineers to use as a guidance in the design or redesign of products and processes within the constraints dictated by business, government, and society such as cost, safety, performance, and environmental impact.

Abbreviations

MEN:

Mass exchange network

MSA:

Mass separation agent

P2:

Pollution prevention

PM5 :

Particulate matter <5μm in diameter

POTW:

Publicly owned (wastewater) treatment works

RCRA:

Resource conservation and recovery act

References

  1. EPA Green Engineering Web site. www.epa.gov/oppt/greenengineering

  2. EPA Green Chemistry Web site, 12 principles of green chemistry. www.epa.gov/oppt/greenchemistry/principles.html

  3. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  4. Malone MF, Huss RS (2003) Green chemical engineering aspects of reactive distillation. Environ Sci Technol 37(23):5325–5329

    Article  CAS  Google Scholar 

  5. Allen DT, Shonnard DR (2004) Green engineering: environmentally conscious design of chemical processes, 3rd edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  6. Douglas JM (1988) Conceptual design of chemical processes. McGraw-Hill, New York

    Google Scholar 

  7. Rossiter AP, Klee H (1995) Hierarchical process review for waste minimization. In: Rossetier AP (ed). Waste Minimzation through process Design McGraw-Hill, New York

    Google Scholar 

  8. Schultz MA, Stewart DG, Harris JM, Rosenblum SP, Shakur MS, O’Brien DE (2002) Reduce costs with dividing-wall columns. Chem Eng Process May:64–71

    Google Scholar 

  9. El-Halwagi MM (1997) Pollution prevention through process integration. Academic, San Diego, CA

    Google Scholar 

  10. Liu YA, Lucas B, Mann JM (2004) Up-to-date tools for water system optimization. Chem Eng 111(1):30–41

    Google Scholar 

  11. Allen DT, Rosselot KS (1997) Pollution prevention for chemical processes. Wiley, New York

    Google Scholar 

  12. Tunca C, Ramachandran PA, Dudukovic MP (2004) Role of chemical reaction engineering in sustainable development. In: Paper presented at AIChE session 7d, Austin, TX, 10 Nov 2004

    Google Scholar 

  13. Mulholland KL, Dyer JA (1999) Pollution prevention: methodology, technologies, and practices. American Institute of Chemical Engineers, New York, p 214

    Google Scholar 

  14. Ney RE Jr (1990) Where did that chemical go? Van Nostrand Reinhold, New York

    Google Scholar 

  15. Mackay D, Patterson S, diGuardo A, Cowan CE (1996) Evaluating the environmental fate of a variety of types of chemicals using the EQC model. Environ Toxicol Chem 15:1627–1637

    Article  CAS  Google Scholar 

  16. Andren AW, Mackay D, Depinto JV, Fox K, Thibodeaux LJ, McLachlan M, Haderlein S (2000) Intermedia partitioning and transport. In: Klečka G, Boethling B, Franklin J, Grady L, Graham D, Howard PH, Kannan K, Larson B, Mackay D, Muir D, van de Meent D (eds) Evaluation of persistence and long-range transport of organic chemicals in the environment. SETAC Press, Pensacola, FL, pp 131–168

    Google Scholar 

  17. Franklin J, Atkinson R, Howard PH, Orlando JJ, Seigneur C, Wallington TJ, Zetzsch C (2000) Quantitative determination of persistence in air. In: Klečka G, Boethling B, Franklin J, Grady L, Graham D, Howard PH, Kannan K, Larson B, Mackay D, Muir D, van de Meent D (eds) Evaluation of persistence and long-range transport of organic chemicals in the environment. SETAC Press, Pensacola, FL, pp 7–62

    Google Scholar 

  18. Thibodeaux LJ (1996) Environmental chemodynamics: movement of chemicals in air, water, and soil, 2nd edn. Wiley, New York

    Google Scholar 

  19. Clark MM (1997) Modeling for environmental engineers and scientists. Wiley, New York

    Google Scholar 

  20. Schnoor JL (1997) Environmental modeling. Wiley, New York

    Google Scholar 

  21. Bishop PL (2004) Pollution prevention: fundamentals and practice. Waveland Press, Long Grove, IL

    Google Scholar 

  22. Thomas RG (1990) Volatilization from water. In: Lyman WJ, Reehl WF, Rosenblatt DH (eds) Handbook of chemical property estimation methods. American Chemical Society, Washington, DC, pp 15-1–15-34

    Google Scholar 

  23. Larson RA, Weber EJ (1994) Reaction mechanisms in environmental organic chemistry. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  24. Lerman A (1971) Time to chemical steady states in lakes and oceans. In: Hem JD (ed) Nonequilibrium systems in natural water chemistry. Advances in chemistry series #106. American Chemical Society, Washington, DC, pp 30–76

    Google Scholar 

  25. Thibodeaux LJ, Valsaraj KT, Reible DD (1993) Associations of polychlorinated biphenyls with particles in natural waters. Water Sci Technol 28(8):215–221

    CAS  Google Scholar 

  26. Baum EJ (1998) Chemical property estimation: theory and application. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  27. McCutcheon SC, Schnoor JL (2003) Overview of phytotransformation and control of wastes. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, New York, pp 3–58

    Google Scholar 

  28. Larson R, Forney L, Grady L Jr, Klečka GM, Masunanga S, Peijnenburg W, Wolfe L (2000) Quantification of persistence in soil, water, and sediments. In: Klečka G, Boethling B, Franklin J, Grady L, Graham D, Howard PH, Kannan K, Larson B, Mackay D, Muir D, van de Meent D (eds) Evaluation of persistence and long-range transport of organic chemicals in the environment. SETAC Press, Pensacola, FL, pp 63–130

    Google Scholar 

  29. Gibson DT, Subramanian V (1984) Microbial degradation of aromatic compounds. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York

    Google Scholar 

  30. Bedard DL, Quensen JF III (1995) Microbial reductive dechlorination of polychlorinated biphenyls. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley, New York

    Google Scholar 

  31. Fish KM, Principe JM (1994) Biotransformations of Arochlor 1242 in Hudson River Test Tube microcosms. Appl Environ Microbiol 60(12):4289–4296

    CAS  Google Scholar 

  32. Ye D, Quensen JF III, Tiedje JM, Boyd SA (1995) Evidence for para-dechlorination of polychlorobiphenyls by methanogenic bacteria. Appl Environ Microbiol 61:2166–2171

    CAS  Google Scholar 

  33. Chakrabarty AM (1982) Biodegradation and detoxification of environmental pollutants. CRC Press, Boca Raton, FL

    Google Scholar 

  34. Alexander M (1994) Biodegradation and bioremediation. Academic, San Diego

    Google Scholar 

  35. Young LY, Cerniglia CE (1995) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York

    Google Scholar 

  36. Burken JG (2004) Uptake and metabolism of organic compounds: green liver model. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, New York, pp 59–84

    Google Scholar 

  37. Jeffers PM, Wolfe NL (1997) Degradation of methyl bromide by green plants. In: Seiber JN (ed) Fumigants: environmental fate exposure and analysis. American Chemical Society, Washington, DC

    Google Scholar 

  38. O’Neill W, Nzengung V, Noakes J, Bender J, Phillips P (1998) Biodegradation of tetrachloroethylene and trichloroethylene using mixed-species microbial mats. In: Wickramanayake GB, Hinchee RE (eds) Bioremediation and phytoremediation. Batelle, Columbus, WA, pp 233–237

    Google Scholar 

  39. Hughes JB, Shanks J, Vanderford M, Lauritzen J, Bhadra R (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environ Sci Technol 31:266–271

    Article  CAS  Google Scholar 

  40. Vanderford M, Shanks JV, Hughes JB (1997) Phytotransformation of trinitrotoluene (TNT) and distribution of metabolic products in myriphyllum aquaticum. Biotechnol Lett 199:277–280

    Article  Google Scholar 

  41. Gao J, Garrison AW, Hoehamer C, Mazur C, Wolfe NL (1999) Phytotransformations of organophosphate pesticides using axenic plant tissue cultures and tissue enzyme extract. In situ and on-site bioremediation. In: The fifth international symposium, San Diego, 19–22 April 1999

    Google Scholar 

  42. Cunningham SD, Berti WR (1993) The remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev Biol Plant 29:207–212

    Article  Google Scholar 

  43. Banks MK, Schwab AP, Govindaraju RS, Kulakow P (1999) Phytoremediation of hydrocarbon contaminated soils. In: Fiorenza S, Oubre LC, Ward CH (eds) Phytoremediation. CRC Press, New York

    Google Scholar 

  44. Schwartzenbach RP, Gschwend PM, Imboden DM (1993) Environmental organic chemistry, 1st edn. Wiley, New York

    Google Scholar 

  45. Wolfe NL, Jeffers PM (2000) Hydrolysis. In: Boethling RS, Mackay D (eds) Handbooks of property estimation methods for chemicals: environmental and health science. CRC Press, Boca Raton, FL, pp 311–334

    Google Scholar 

  46. Zepp RG (1982) Experimental approaches to environmental photochemistry. In: Hutzinger O (ed) The handbook of environmental chemistry, Vol. 2, Part B. Springer-Verlag, Berlin, pp 19–41

    Google Scholar 

  47. Alebić-Juretić A, Güsten H, Zetzsch C (1991) Absorption spectra of hexachlorobenzene adsorbed on SiO2 powders. Fresenius J Anal Chem 340:380–383

    Article  Google Scholar 

  48. Bermen JM, Graham JL, Dellinger B (1992) High temperature UV absorption characteristics of three environmentally sensitive compounds. J Photochem Photobiol A Chem 68:353–362

    Article  Google Scholar 

  49. Tysklind M, Lundgrenand K, Rappe C (1993) Ultraviolet absorption characteristics of all tetra-to octachlorinated dibenzofurans. Chemosphere 27:535–546

    Article  CAS  Google Scholar 

  50. Kwok ESC, Arey J, Atkinson R (1994) Gas-phase atmospheric chemistry of dibenzo-p-dioxin and dibenzofuran. Environ Sci Technol 28:528–533

    Article  CAS  Google Scholar 

  51. Funk DJ, Oldenborg RC, Dayton DP, Lacosse JP, Draves JA, Logan TJ (1995) Gas-phase absorption and later-induced fluorescence measurements of representative polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and a polycyclic aromatic hydrocarbon. Appl Spectros 49:105–114

    Article  CAS  Google Scholar 

  52. Konstantinou IK, Zarkdis AK, Albanis TA (2001) Photodegradation of selected herbicides in various natural waters and soils under environmental conditions. J Environ Qual 30:121–130

    Article  CAS  Google Scholar 

  53. Allen DT, Shonnard DR (2002) Green engineering: environmental conscious design of chemical processes. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  54. Windholz M, Budavara S, Blumetti RF, Otterbein ES (1983) The Merck Index: an encyclopedia of chemicals, drugs, and biologicals, 6th edn. Merck & Co., Rahway, NJ

    Google Scholar 

  55. Howard PH, Boethling RS, Jarvis WF, Meylan WM, Michalenko EM (1991) Handbooks of environmental degradation rates. Lewis Publishers, Chelsea, MI

    Google Scholar 

  56. Dean JA (1992) Lange’s handbook of chemistry, 14th edn. McGraw-Hill, New York

    Google Scholar 

  57. Lide DR (1994) CRC handbook of chemistry and physics, 74th edn. CRC Press, Boca Raton, FL

    Google Scholar 

  58. Mackay D, Shiu WY, Ma KC (1992–1997) Illustrated handbook of physical chemical properties and environmental fate of organic chemicals, vols 1–5. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  59. Howard PH, Meylan WM (1997) Handbook of physical properties of organic chemicals. CRC Press, Boca Raton, FL

    Google Scholar 

  60. Tomlin CDS (ed) (1997) The pesticide manual, 11th edn. British Crop Protection Council, Farnham, Surrey

    Google Scholar 

  61. Yaws CL (1999) Chemical properties handbook. McGraw-Hill, New York

    Google Scholar 

  62. Verschueren K (2001) Handbook of environmental data on organic chemicals, 3rd and 4th edns. Van Nostrand-Reinhold, New York

    Google Scholar 

  63. Lyman WJ, Reehl WF, Rosenblatt DH (1982) Handbook of chemical property estimation methods: environmental behavior of organic compounds. McGraw-Hill, New York

    Google Scholar 

  64. Neely WB, Blau GE (1985) Environmental exposure from chemicals, vols I and II. CRC Press, Boca Raton, FL

    Google Scholar 

  65. Bare JC, Norris GA, Pennington DW, McKone T (2003) TRACI: the tool for the reduction and assessment of chemical and other impacts. J Indust Ecol 6(3–4):49–78

    Google Scholar 

  66. Goedkoop M (1995) The Eco-indicator 95, final report. Netherlands Agency for Energy and the Environment (NOVEM) and the National Institute of Public Health and Environmental Protection (RIVM), NOH report 9523

    Google Scholar 

  67. Heijungs R, Guinée JB, Huppes G, Lankreijer RM, Udo de Haes HA, Wegener Sleeswijk A (1992) Environmental life cycle assessment of products. Guide and backgrounds. NOH Report Numbers 9266 and 9267, Netherlands Agency for Energy and the Environment, Nov 1992

    Google Scholar 

  68. ISO 14040–14049 (1997–2002) Environmental management—life cycle assessment. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  69. SETAC, Society for Environmental Toxicology and Chemistry (1993) Guidelines for life-cycle assessment: code of practice. Brussels, Belgium

    Google Scholar 

  70. Douglas JM (1992) Process Synthesis for Waste Minimization. Ind Eng Chem Res 31(1):238–243

    Google Scholar 

  71. PARIS II (2005). http://www.tds-tds.com/

  72. Chen H, Shonnard DR (2004) A systematic framework for environmental-conscious chemical process design: early and detailed design stages. Ind Eng Chem Res 43(2):535–552

    Article  CAS  Google Scholar 

  73. Allen DT, Shonnard DR (2001) Green engineering: environmentally conscious design of chemical processes and products. AlChE J 47(9):1906–1910

    Article  CAS  Google Scholar 

  74. NRC (National Research Council) (1983) Risk assessment in the federal government: managing the process. Committee on Institutional Means for Assessment of Risks to Public Health. National Academy Press, Washington, DC

    Google Scholar 

  75. Air CHIEF. The air ClearingHouse for inventories and emission factors, CD-ROM. http://www.epa.gov/oppt/greenengineering/software.html. Accessed 2005

  76. Mackay D, Shiu W, Ma K (1992) Illustrated hand book of physical-chemical properties and environmental fate for organic chemicals, vol 1–4. Lewis Publishers, Chelsea, MI

    Google Scholar 

  77. Shonnard DR, Hiew DS (2000) Comparative environmental assessments of VOC recovery and recycle design alternatives for a gaseous waste stream. Environ Sci Technol 34(24):5222–5228

    Article  CAS  Google Scholar 

  78. WAR (WAste Reduction Algorithm). http://www.epa.gov/oppt/greenengineering/software.html

  79. SACHE, Safety and Chemical Engineering Education. American Institute of Chemical Engineers. http://www.sache.org. Accessed 2005

  80. Shonnard DR (2005) Tools and materials for green engineering and green chemistry education, green chemistry and engineering education—a workshop organized by the Chemical Sciences Roundtable of the National Research Council, 7–8 Nov 2005

    Google Scholar 

  81. Genco JM (1991) Pulp. In: Kroschwitz JI (ed) Kirk-Othmer encyclopedia of chemical technology, vol 20. Wiley, New York, p 493

    Google Scholar 

  82. Collins TJ, Horwitz C, Gordon-Wylie SW (1999) TAML™ Activators: general activation of hydrogen peroxide for green oxidation processes, provided by Mary Kirchhoff. Green Chemistry Institute, American Chemical Society

    Google Scholar 

  83. Miller K (2005) Comments at the panel discussion in the session “Building the business case for sustainability,” AIChE spring meeting, Atlanta, 12 April 2005

    Google Scholar 

  84. Schrott W, Saling P (2000) Eco-efficiency analysis—testing products for their value to the customer. Melliand Textil 81(3):190, 192–194

    Google Scholar 

  85. Landsiedel R, Saling P (2002) Assessment of toxicological risks for life cycle assessment and eco-efficiency analysis. Int J Life Cycle Assess 7(5):261–268

    Article  CAS  Google Scholar 

  86. Azapagic A (1999) Life cycle assessment and its application to process selection, design, and optimization. Chem Eng J 73(1):1–21

    Article  CAS  Google Scholar 

  87. Burgess AA, Brennan DJ (2001) Application of life cycle assessment to chemical processes. Chem Eng Sci 56, 8 (April) 2589, 2609

    Google Scholar 

  88. Royal Commission on Environmental Pollution (1988) Best practicable environmental option. Twelfth report, Cm130, London, England

    Google Scholar 

  89. Beaver ER (2004) Calculating metrics for acetic acid production. In: AIChE sustainability engineering conference proceedings, Austin, TX, Nov 2004, pp 7–15

    Google Scholar 

  90. International Organization of Standardization (ISO) (1997) Environmental management—life cycle assessment—principles and framework. International Organization of Standardization, Geneva, Switzerland (International Standard ISO14040:1997(E))

    Google Scholar 

  91. International Organization of Standardization (ISO) (1998) Environmental management—life cycle assessment—goal and scope definition and inventory analysis. International Organization of Standardization, Geneva, Switzerland (International Standard ISO14041:1998(E))

    Google Scholar 

  92. International Organization of Standardization (ISO) (2000) Environmental management—life cycle assessment—life cycle impact assessment. International Organization of Standardization, Geneva, Switzerland (International Standard ISO14042:2000(E) )

    Google Scholar 

  93. International Organization of Standardization (ISO) (2000) Environmental management—life cycle assessment—life cycle interpretation. International Organization of Standardization, Geneva, Switzerland (International Standard ISO14043:2000(E) )

    Google Scholar 

  94. International Organization for Standardization (ISO) (2006) Environmental management—life-cycle assessment—principles and framework. International Organization for Standardization, Geneva, Switzerland (International Standard ISO 14040:2006)

    Google Scholar 

  95. International Organization for Standardization (ISO) (2006) Environmental management—life-cycle assessment—requirements and guidelines. International Organization for Standardization, Geneva, Switzerland (International Standard ISO 14044:2006)

    Google Scholar 

  96. Ukidwe NW, Bakshi BR (2004) Economic versus natural capital flows in industrial supply networks—implications to sustainability. In: AIChE sustainability engineering conference proceedings, Austin, TX, Nov 2004, pp 145–153

    Google Scholar 

  97. Graedel TE (1998) Streamlined life-cycle assessment. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  98. Curran M (ed) (1997) Environmental life-cycle assessment. McGraw Hill, New York

    Google Scholar 

  99. Azapagic A, Perdan S, Clift R (2004) Sustainable development in practice: case studies for engineers and scientists. Wiley, New York

    Book  Google Scholar 

  100. Chevalier J, Rousseaux P, Benoit V, Benadda B (2003) Environmental assessment of flue gas cleaning processes of municipal solid waste incinerators by means of the life cycle assessment approach. Chem Eng Sci 58(10):2053–2064

    Article  CAS  Google Scholar 

  101. Ekvall T, Finnveden G (2001) Allocation in ISO 14041—a critical review. J Cleaner Prod 9(3):197–208

    Article  Google Scholar 

  102. Bakshi BR, Hau JL (2004) A multiscale and multiobjective approach for environmentally conscious process retrofitting. In: AIChE sustainability engineering conference proceedings, Austin, TX, Nov 2004, pp 229–235

    Google Scholar 

  103. Ukidwe NW, Bakshi BR (2004) A multiscale Bayesian framework for designing efficient and sustainable industrial systems. In: AIChE sustainability engineering conference proceedings, Austin, TX, Nov 2004, pp 179–187

    Google Scholar 

  104. Suh S, Lenzen M, Treloar GJ, Hondom H, Harvath A, Huppes G, Jolliet O, Klann U, Krewitt W, Morguchi Y, Munksgaard J, Norris G (2004) System boundary selection in life-cycle inventories using hybrid approaches. Environ Sci Technol 38(3):657–663

    Article  CAS  Google Scholar 

  105. Lei L, Zhifeng L, Fung R (2003) “The most of the most”—study of a new LCA method. In: IEEE proceedings, San Francisco, CA pp 177–182

    Google Scholar 

  106. Bakshi BR, Hau JL (2004) Using exergy analysis for improving life cycle inventory databases. In: AIChE sustainability engineering conference proceedings, Austin, TX, Nov 2004, pp 131–134

    Google Scholar 

  107. Cornelissen RL, Hirs GG (2002) The value of the exergetic life cycle assessment besides the LCA. Energy Convers Manage 43:1417–1424

    Article  CAS  Google Scholar 

  108. Becalli G, Cellura M, Mistretta M (2003) New exergy criterion in the “multi-criteria” context: a life cycle assessment of two plaster products. Energy Conserv Manage 44:2831–2838

    Google Scholar 

  109. Jimenez-Gonzalez C, Overcash MR, Curzons A (2001) Waste treatment modules—a partial life cycle inventory. J Chem Technol Biotechnol 76:707–716

    Article  CAS  Google Scholar 

  110. Jimenez-Gonzalez C, Kim S, Overcash MR (2000) Methodology for developing gate-to-gate life cycle inventory information. Int J Life Cycle Assess 5:153–159

    Article  CAS  Google Scholar 

  111. Curzons AD, Jimenez-Gonzalez C, Duncan AL, Constable DJC, Cunningham VL (2007) Fast life cycle assessment of synthetic chemistry FLASC tool. Int J Life Cycle Assess 12:272–280

    CAS  Google Scholar 

  112. Grinter T (2010) The development of an environmentally sustainable process for radafaxine. In: Dunn P, Wells A, Williams T (eds) green chemistry in the pharmaceutical industry. Wiley-VCH, Weinheim, pp 197–219

    Chapter  Google Scholar 

  113. Xun J, High KA (2004) A new conceptual hierarchy for identifying envirnomental sustainability merrics. Environmental progress 23(4):291–301

    Google Scholar 

  114. Shonnard DR, Kichere A, Saling P (2003) Industrial applications using BASF eco-efficiency analysis: perspectives on green engineering principles. Environ Sci Technol 37:5340–5348

    Article  CAS  Google Scholar 

  115. Mueller J, Griese H, Schischke K, Stobbe I, Norris GA, Udo de Haes HA (2004) Life cycle thinking for green electronics: basics in ecodesign and the UNEP/SETAC life cycle initiative. In: International IEEE conference on Asian green electronics, Hong Kong and Shenzhen china, pp 193–199

    Google Scholar 

  116. Widiyanto A, Kato S, Maruyama N, Kojima Y (2003) Environmental impact of fossil fuel fired co-generation plants using a numerically standardized LCA scheme. J Energy Res Technol 125:9–16

    Article  CAS  Google Scholar 

  117. Goralczyk M (2003) Life-cycle assessment in the renewable energy sector. Appl Energy 75:205–211

    Article  Google Scholar 

  118. Schleisner L (2000) Life cycle assessment of a wind farm and related externalities. Renew Energy 20:279–288

    Article  CAS  Google Scholar 

  119. Koroneos C, Dompros A, Roumbas G, Moussiopoulos N (2004) Life cycle assessment of hydrogen fuel production processes. Int J Hydrogen Energy 29:1443–1450

    Article  CAS  Google Scholar 

  120. Furuholt E (1995) Life cycle assessment of gasoline and diesel. Resources Conserv Recycl 14:251–263

    Article  Google Scholar 

  121. MacLean HL, Lave LB (2003) Life cycle assessment of automobile/fuel options. Environ Sci Technol 37:5445–5452

    Article  CAS  Google Scholar 

  122. Narayanan D, Zhang Y, Mannan MS (2007) Engineering for sustainable development (ESD) in biodiesel production. Trans IChem E 85:349–359

    CAS  Google Scholar 

  123. Dinh LTT, Guo Y, Mannan MS (2009) Sustainability evaluation of biodiesel production using multicriteria decision making. Environ Prog Sust Energy 28:38–46

    Article  CAS  Google Scholar 

  124. Amatayakul W, Ramnas O (2001) Life cycle assessment of a catalytic converter for passenger cars. J Cleaner Prod 9:395–403

    Article  Google Scholar 

  125. Baratto F, Diwekar UM (2005) Life cycle of fuel cell-based APUs. J Power Sources 139:188–196

    Article  CAS  Google Scholar 

  126. Eagan P, Weinberg L (1999) Application of analytic hierarchy process techniques to streamlined life-cycle analysis of two anodizing processes. Environ Sci Technol 33:1495–1500

    Article  CAS  Google Scholar 

  127. Tan R, Khoo BH, Hsien H (2005) An LCA study of a primary aluminum supply chain. J Cleaner Prod 13(6):607–618

    Article  Google Scholar 

  128. Jodicke G, Zenklusen O, Weidenhaupt A, Hungerbuhler K (1999) Developing environmentally sound processes in the chemical industry: a case study on pharmaceutical intermediates. J Cleaner Prod 7(2):159–166

    Article  Google Scholar 

  129. Jimenez-Gonzalez C, Curzons AD, Constable DJC, Cunningham VL (2004) Cradle-to-gate life cycle inventory and assessment of pharmaceutical compounds. Int Life Cycle Assess 9:114–121

    Article  Google Scholar 

  130. Jimenez-Gonzalez C, Overcash MR (2000) Energy optimization during early drug development and the relationship with environmental burdens. J Chem Technol Biotechnol 75:983–990

    Article  CAS  Google Scholar 

  131. Wall-Markowski CA, Kicherer A, Saling P (2004) Using eco-efficiency analysis to assess renewable-resource-based technologies. Environ Progress 23(4):329–333

    Article  CAS  Google Scholar 

  132. Slater CS, Savelski MJ, Carole WA, Constable DJC (2010) Solvent use and waste issues. In: Dunn P, Wells A, Williams T (eds) Green chemistry in the pharmaceutical industry. Wiley-VCH, Weinheim, pp 49–82

    Chapter  Google Scholar 

  133. Slater CS, Savelski MJ (2009) Towards a greener pharmaceutical manufacturing environment. Innov Pharm Tech 29:78–83

    Google Scholar 

  134. Raymond MJ, Slater CS, Savelski MJ (2010) LCA approach to the analysis of solvent waste issues in the pharmaceutical industry. Green Chem 12:1826–1834

    Article  CAS  Google Scholar 

  135. Slater CS, Savelski MJ, Taylor S, Kiang S, LaPorte T, Spangler L (2007) Pervaporation as a green drying process for solvent recovery in pharmaceutical production. Paper 223f, American Institute of Chemical Engineers, 2007 annual meeting, Salt Lake City, UT, Nov 2007

    Google Scholar 

  136. Slater CS, Savelski MJ, Hounsell G, Pilipauskas D, Urbanski F (2008) Analysis of separation methods for isopropanol recovery in the celecoxib process, Paper 290b. In: Proceedings 2008 meeting, American Institute of Chemical Engineers, Philadelphia, PA, Nov 2008

    Google Scholar 

  137. Raluy RG, Serra L, Uche J, Valero A (2004) Life-cycle of desalination technologies integrated with energy production systems. Desalination 167:445–458

    Article  CAS  Google Scholar 

  138. Pre Consultants, Amersfoort, The Netherlands http://www.pre-sustainability.com

  139. Papasavva S, Kia S, Claya J, Gunther R (2001) Characterization of automotive paints: an environmental impact analysis. Prog Org Coat 43:193–206

    Article  CAS  Google Scholar 

  140. Dobson ID (2001) Life cycle assessment for painting processes, putting the VOC issue in perspective. Prog Org Coat 27:55–58

    Article  Google Scholar 

  141. Lopes E, Dias A, Arroja L, Capela I, Pereira F (2003) Application of life cycle assessment to the Portuguese pulp and paper industry. J Cleaner Prod 11:51–59

    Article  Google Scholar 

  142. Rios P, Stuart JA, Grant E (2003) Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery. Environ Sci Technol 37:5463–5470

    Article  CAS  Google Scholar 

  143. Song H-S, Hyun JC (1999) A study on the comparison of the various waste management scenarios for pet bottles using life-cycle assessment (LCA) methodology. Resour Conserv Recycl 27:267–284

    Article  Google Scholar 

  144. Ekvall T (1999) Key methodological issues for life cycle inventory analysis of paper recycling. J Cleaner Prod 7:281–294

    Article  Google Scholar 

  145. Shiojiri K, Yanagisawa Y, Fujii M, Kiyono F, Yamasaki A (2004) A life cycle impact assessment study on sulfur hexafluoride as a gas insulator. In: AIChE sustainability engineering conference proceedings, Austin, TX, Nov 2004, pp 135–143

    Google Scholar 

  146. Vlasopoulos N, Memom FA, Butler D, Murphy R (2006) Life cycle assessment of wastewater treatment technologies treating petroleum process waters. Sci Total Environ 367:58–70

    Article  CAS  Google Scholar 

  147. Sauers L, Mitra S (2009) Sustainability innovation in the consumer products industry. Chem Eng Progress 105:36–40

    CAS  Google Scholar 

  148. Cederberg C, Mattson B (2000) Life cycle assessment of milk production—a comparison of conventional and organic farming. J Cleaner Prod 8:49–60

    Article  Google Scholar 

  149. Zabaniotou A, Kassidi E (2003) Life cycle assessment applied to egg packaging made from polystyrene and recycled paper. J Cleaner Prod 11:549–559

    Article  Google Scholar 

  150. Bohlmann GM (2004) Biodegradable packaging life-cycle assessment. Environ Progress 23(4):342–346

    Article  CAS  Google Scholar 

  151. Anderson K, Ohlsson T, Olsson P (1998) Screening life cycle assessment of tomato ketchup: a case study. J Cleaner Prod 6:277–288

    Article  Google Scholar 

Additional Suggested Reading: Introduction to Green Chemistry and Green Engineering

  • Allen D, Rosselot K (1997) Pollution prevention for chemical processes. Wiley, New York

    Google Scholar 

  • Allen DT, Shonnard DR (2001) Green engineering: environmentally conscious design of chemical processes and products. AlChE J 47(9):1906–1910

    Article  CAS  Google Scholar 

  • Anastas PA, Zimmerman JB (2003) Design through the twelve principles of green engineering. Environ Sci Technol 37(5):94A–101A

    Article  Google Scholar 

  • Boethling R, Mackay D (2000) Handbook of property estimation methods for chemicals. Lewis Publishers, Roca Raton, FL

    Book  Google Scholar 

  • Byrd D, Cothern R (2000) Introduction to risk analysis. Government Institutes, Rockville, MD

    Google Scholar 

  • Daugherty J (1998) Assessment of chemical exposures. Lewis Publishers, Roca Ratan, FL

    Google Scholar 

  • El-Halwagi M (1997) Pollution prevention through process integration. Academic, San Aeogo, CA

    Google Scholar 

  • EPA Exposure Assessment Web site. www.epa.gov/oppt/exposure

  • EPA Pollution Prevention Framework Web site. www.epa.gov/oppt/p2framework/

  • Hesketh RP, Slater CS, Savelski MJ, Hollar K, Farrell S (2004) A program to help in designing courses to integrate green engineering subjects. Int J Eng Educ 20(1):113–128

    Google Scholar 

  • Graedel TE, Allenby BR (1995) Industrial ecology. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Martin A, Nguyen N (2003) Green engineering: defining the principles—results from the Sandestin conference. Environ Progress 22(4):233–236

    Article  Google Scholar 

  • Ritter S (2003) A green agenda for engineering. Chem Eng News 81(29):30–32

    Article  Google Scholar 

  • Shonnard DR, Allen DT, Nguyen N, Austin SW, Hesketh R (2003) Green engineering education through a US EPA/academia collaboration. Environ Sci Technol 37(23):5453–5462

    Article  CAS  Google Scholar 

  • Slater CS, Hesketh RP (2004) Incorporating green engineering into a material and energy balance course. Chem Eng Educ 38(1):48–53

    CAS  Google Scholar 

  • Socolow R, Andrews F, Berkhout F, Thomas V (1994) Industrial ecology and global change. Cambridge University Press, New York

    Book  Google Scholar 

Pollution Prevention Heuristics for Chemical Processes

  • EPA Green Chemistry Web site, Green chemistry expert system: analysis of existing processes, building new green processes, and design. www.epa.gov/greenchemistry/tools.htm

  • Freeman H (ed) (1994) Industrial pollution prevention handbook. McGraw Hill, New York

    Google Scholar 

  • Allen DT, Shonnard DR (2002) Green engineering: environmentally conscious design of chemical processes. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Dyer JA, Mulholland KL (1998) Prevent pollution via better reactor design and operation. Chem Eng Process 94(2):61–66

    CAS  Google Scholar 

  • Wynn C (2001) Pervaporation comes of age. Chem Eng Process October:66–72

    Google Scholar 

Understanding and Prediction of the Environmental Fate of Chemicals

  • Crosby DG, Wong AS (1977) Environmental degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Science 195:1337–1338

    Article  CAS  Google Scholar 

  • Hansch C, Leo A (1995) Exploring QSAR: fundamental and applications in chemistry and biology. American Chemical Society, Washington, DC

    Google Scholar 

  • Jeffers PM, Wolfe NL (1998) Green plants: a terrestrial sink for atmospheric methyl bromide. Geophys Res Lett 25:43–46

    Article  CAS  Google Scholar 

  • Mackay D (1991) Multimedia environmental models: the fugacity approach. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Meylen WM, Howard PH (1995) Atom/fragment contribution method for estimating octanol-water partition coefficients. J Pharm Sci 84:83–92

    Article  Google Scholar 

  • Syracuse Research Corporation [SRC] (2005) Syracuse, NY. Internet address: http://www.syrres.com

Environmental Performance Assessment for Chemical Process Design

  • Cano-Ruiz JA, McRae GJ (1998) Environmentally conscious chemical process design. Annu Rev Energy Environ 23:499

    Article  Google Scholar 

Life-Cycle Assessment

  • Carnegie Mellon University. http://www.eiolca.net/index.html, developed by Green Design Initiative, Carnegie Mellon University. Accessed 21 March 2005

  • Bauman H, Tillman A-M (2004) The Hitch Hiker’s guide to LCA: an orientation in life cycle assessment methodology and applications. Studentlitteratur, AB, Lund

    Google Scholar 

  • Graedel TE (1998) Streamlined life-cycle assessment. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

Download references

Acknowledgments

P. A. Ramachandran would like to thank National Science Foundation for partial support of research in the general area of environmentally benign processing through the grant NSF-ERC center grant EEC-0310689.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Shonnard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shonnard, D. et al. (2012). Green Engineering: Integration of Green Chemistry, Pollution Prevention, and Risk-Based Considerations. In: Kent, J. (eds) Handbook of Industrial Chemistry and Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4259-2_5

Download citation

Publish with us

Policies and ethics