Skip to main content

Molecular Scissors: From Biomaterials Implant to Tissue Remodeling

  • Chapter
  • First Online:
Biologically Responsive Biomaterials for Tissue Engineering

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 1))

Abstract

All type of implantations, especially for non-resorptive materials ­(metallic, hard insoluble polymers) involve an inflammatory response, followed by wound ­healing reaction (angiogenesis, fibroblast activation) and extracellular matrix (ECM) remodeling. An implanted biomaterial interacts not only with mobile cells of physiological body fluids but also with ECM. Almost all tissues (except epithelial tissues) possess an abundant ECM, with various compositions. Many implant failures may be due to an impaired cellular response (including inflammation) but all cell behavior can be influenced by the chemical composition and the physical properties of the ECM. Our group has performed various biomaterials testing in vivo by subcutaneous rat implantation followed by analysis of peri-implant tissues in order to detect inflammatory processes and their consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abreu T, Silva G (2009) Cell movement: new research trends. Nova Biomedical Books, New York

    Google Scholar 

  2. Agren MS, Jorgensen LN, Andersen M, Viljanto J, Gottrup F (1998) Matrix metalloproteinase 9 level predicts optimal collagen deposition during early wound repair in humans. Br J Surg 85(1):68–71

    Article  CAS  Google Scholar 

  3. Arumugam S, Jang YC, Chen-Jensen C, Gibran NS, Isik FF (1999) Temporal activity of plasminogen activators and matrix metalloproteinases during cutaneous wound repair. Surgery 125(6):587–593

    Article  CAS  Google Scholar 

  4. Aschi M, Bozzi A, Di Bartolomeo R, Petruzzelli R (2010) The role of disulfide bonds and N-terminus in the structural properties of hepcidins: insights from molecular dynamics simulations. Biopolymers 93(10):917–926

    Article  CAS  Google Scholar 

  5. Atassi F (2002) Periimplant probing: positives and negatives. Implant Dent 11(4):356–362

    Article  Google Scholar 

  6. Baier RE, Meenaghan MA, Hartman LC, Wirth JE, Flynn HE, Meyer AE et al (1988) Implant surface characteristics and tissue interaction. J Oral Implantol 13(4):594–606

    CAS  Google Scholar 

  7. Banyai L, Tordai H, Patthy L (1994) The gelatin-binding site of human 72 kDa type IV collagenase (gelatinase A). Biochem J 298(Pt 2):403–407

    CAS  Google Scholar 

  8. Baramova E, Foidart JM (1995) Matrix metalloproteinase family. Cell Biol Int 19(3):239–242

    CAS  Google Scholar 

  9. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR et al (1978) The Protein Data Bank: a computer-based archival file for macromolecular structures. Arch Biochem Biophys 185(2):584–591

    Article  CAS  Google Scholar 

  10. Bertini I, Calderone V, Fragai M, Luchinat C, Mangani S, Terni B (2004) Crystal structure of the catalytic domain of human matrix metalloproteinase 10. J Mol Biol 336(3):707–716

    Article  CAS  Google Scholar 

  11. Betz M, Huxley P, Davies SJ, Mushtaq Y, Pieper M, Tschesche H et al (1997) 18-A crystal structure of the catalytic domain of human neutrophil collagenase (matrix metalloproteinase-8) complexed with a peptidomimetic hydroxamate primed-side inhibitor with a distinct selectivity profile. Eur J Biochem 247(1):356–363

    Article  CAS  Google Scholar 

  12. Bittar EE, Bittar N (1995) Cellular organelles and the extracellular matrix. JAI Press, Greenwich, CT

    Google Scholar 

  13. Black LD, Allen PG, Morris SM, Stone PJ, Suki B (2008) Mechanical and failure properties of extracellular matrix sheets as a function of structural protein composition. Biophys J 94(5):1916–1929

    Article  CAS  Google Scholar 

  14. Blagg JA, Noe MC, Wolf-Gouveia LA, Reiter LA, Laird ER, Chang SP et al (2005) Potent pyrimidinetrione-based inhibitors of MMP-13 with enhanced selectivity over MMP-14. Bioorg Med Chem Lett 15(7):1807–1810

    Article  CAS  Google Scholar 

  15. Bosman FT, Stamenkovic I (2003) Functional structure and composition of the extracellular matrix. J Pathol 200(4):423–428

    Article  CAS  Google Scholar 

  16. Butler GS, Tam EM, Overall CM (2004) The canonical methionine 392 of matrix metalloproteinase 2 (gelatinase A) is not required for catalytic efficiency or structural integrity: probing the role of the methionine-turn in the metzincin metalloprotease superfamily. J Biol Chem 279(15):15615–15620

    Article  CAS  Google Scholar 

  17. Carrascal N, Rizzo RC (2009) Calculation of binding free energies for non-zinc chelating pyrimidine dicarboxamide inhibitors with MMP-13. Bioorg Med Chem Lett 19(1):47–50

    Article  CAS  Google Scholar 

  18. Chakrabarti B, Bairagya HR, Mallik P, Mukhopadhyay BP, Bera AK (2011) An insight to conserved water molecular dynamics of catalytic and structural Zn(+2) ions in matrix metalloproteinase 13 of human. J Biomol Struct Dyn 28(4):503–516

    Article  CAS  Google Scholar 

  19. Clark IM, Young DA, Rowan AD (2010) Matrix metalloproteinase protocols, 2nd edn. Humana, New York, NY

    Book  Google Scholar 

  20. Conant K, Gottschall PE (2005) Matrix metalloproteinases in the central nervous system. Imperial College Press, London, Hackensack, NJ, Distributed by World Scientific

    Book  Google Scholar 

  21. Cornwell KG, Landsman A, James KS (2009) Extracellular matrix biomaterials for soft tissue repair. Clin Podiatr Med Surg 26(4):507–523

    Article  Google Scholar 

  22. Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103(3):481–490

    Article  CAS  Google Scholar 

  23. Curran S, Dundas SR, Buxton J, Leeman MF, Ramsay R, Murray GI (2004) Matrix metalloproteinase/tissue inhibitors of matrix metalloproteinase phenotype identifies poor prognosis colorectal cancers. Clin Cancer Res 10(24):8229–8234

    Article  CAS  Google Scholar 

  24. Curran S, Murray GI (1999) Matrix metalloproteinases in tumour invasion and metastasis. J Pathol 189(3):300–308

    Article  CAS  Google Scholar 

  25. Damsky CH, Werb Z (1992) Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information. Curr Opin Cell Biol 4(5):772–781

    Article  CAS  Google Scholar 

  26. Diaz N, Suarez D (2007) Molecular dynamics simulations of matrix metalloproteinase 2: role of the structural metal ions. Biochemistry 46(31):8943–8952

    Article  CAS  Google Scholar 

  27. Diaz N, Suarez D (2008) Molecular dynamics simulations of the active matrix metalloproteinase-2: positioning of the N-terminal fragment and binding of a small peptide substrate. Proteins 72(1):50–61

    Article  CAS  Google Scholar 

  28. Eck SM, Hoopes PJ, Petrella BL, Coon CI, Brinckerhoff CE (2009) Matrix metalloproteinase-1 promotes breast cancer angiogenesis and osteolysis in a novel in vivo model. Breast Cancer Res Treat 116(1):79–90

    Article  CAS  Google Scholar 

  29. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174

    Article  CAS  Google Scholar 

  30. El Haj AJ, Cartmell SH (2010) Bioreactors for bone tissue engineering. Proc Inst Mech Eng H 224(12):1523–1532

    Article  CAS  Google Scholar 

  31. Ennis BW, Matrisian LM (1994) Matrix degrading metalloproteinases. J Neurooncol 18(2):105–109

    Article  CAS  Google Scholar 

  32. Fainardi E, Castellazzi M, Tamborino C, Trentini A, Manfrinato MC, Baldi E et al (2009) Potential relevance of cerebrospinal fluid and serum levels and intrathecal synthesis of active matrix metalloproteinase-2 (MMP-2) as markers of disease remission in patients with multiple sclerosis. Mult Scler 15(5):547–554

    Article  CAS  Google Scholar 

  33. Freeman-Cook KD, Reiter LA, Noe MC, Antipas AS, Danley DE, Datta K et al (2007) Potent selective spiropyrrolidine pyrimidinetrione inhibitors of MMP-13. Bioorg Med Chem Lett 17(23):6529–6534

    Article  CAS  Google Scholar 

  34. Gailit J, Clark RA (1994) Wound repair in the context of extracellular matrix. Curr Opin Cell Biol 6(5):717–725

    Article  CAS  Google Scholar 

  35. Galvez BG, Genis L, Matias-Roman S, Oblander SA, Tryggvason K, Apte SS et al (2005) Membrane type 1-matrix metalloproteinase is regulated by chemokines monocyte-chemoattractant protein-1/ccl2 and interleukin-8/CXCL8 in endothelial cells during angiogenesis. J Biol Chem 280(2):1292–1298

    Article  CAS  Google Scholar 

  36. Gapski R, Barr JL, Sarment DP, Layher MG, Socransky SS, Giannobile WV (2004) Effect of systemic matrix metalloproteinase inhibition on periodontal wound repair: a proof of concept trial. J Periodontol 75(3):441–452

    Article  CAS  Google Scholar 

  37. Gapski R, Hasturk H, Van Dyke TE, Oringer RJ, Wang S, Braun TM et al (2009) Systemic MMP inhibition for periodontal wound repair: results of a multi-centre randomized-controlled clinical trial. J Clin Periodontol 36(2):149–156

    Article  Google Scholar 

  38. Geisler S, Lichtinghagen R, Boker KH, Veh RW (1997) Differential distribution of five members of the matrix metalloproteinase family and one inhibitor (TIMP-1) in human liver and skin. Cell Tissue Res 289(1):173–183

    Article  CAS  Google Scholar 

  39. Giaccone G, Soria J-C (2007) Targeted therapies in oncology. Informa Healthcare, New York

    Google Scholar 

  40. Goffin JR, Anderson IC, Supko JG, Eder JP Jr, Shapiro GI, Lynch TJ et al (2005) Phase I trial of the matrix metalloproteinase inhibitor marimastat combined with carboplatin and paclitaxel in patients with advanced non-small cell lung cancer. Clin Cancer Res 11(9):3417–3424

    Article  CAS  Google Scholar 

  41. Gramoun A, Goto T, Nordstrom T, Rotstein OD, Grinstein S, Heersche JN et al (2010) Bone matrix proteins and extracellular acidification: potential co-regulators of osteoclast morphology. J Cell Biochem 111(2):350–361

    Article  CAS  Google Scholar 

  42. Grassi F, Cristino S, Toneguzzi S, Piacentini A, Facchini A, Lisignoli G (2004) CXCL12 chemokine up-regulates bone resorption and MMP-9 release by human osteoclasts: CXCL12 levels are increased in synovial and bone tissue of rheumatoid arthritis patients. J Cell Physiol 199(2):244–251

    Article  CAS  Google Scholar 

  43. Greenwald RA, Zucker S, Golub LM (1999) Inhibition of matrix metalloproteinases: ­therapeutic applications. New York Academy of Sciences, New York, NY

    Google Scholar 

  44. Gristina AG (1994) Implant failure and the immuno-incompetent fibro-inflammatory zone. Clin Orthop Relat Res (298):106–118

    Google Scholar 

  45. Gruber HE, Ingram JA, Hoelscher GL, Zinchenko N, Norton HJ, Hanley EN Jr (2009) Matrix metalloproteinase 28 a novel matrix metalloproteinase is constitutively expressed in human intervertebral disc tissue and is present in matrix of more degenerated discs. Arthritis Res Ther 11(6):R184

    Article  CAS  Google Scholar 

  46. Gu Q, Wang D, Gao Y, Zhou J, Peng R, Cui Y et al (2002) Expression of MMP1 in surgical and radiation-impaired wound healing and its effects on the healing process. J Environ Pathol Toxicol Oncol 21(1):71–78

    Article  CAS  Google Scholar 

  47. Hay ED (1991) Cell biology of extracellular matrix, 2nd edn. Plenum, New York

    Book  Google Scholar 

  48. He H, Puerta DT, Cohen SM, Rodgers KR (2005) Structural and spectroscopic study of reactions between chelating zinc-binding groups and mimics of the matrix metalloproteinase and disintegrin metalloprotease catalytic sites: the coordination chemistry of metalloprotease inhibition. Inorg Chem 44(21):7431–7442

    Article  CAS  Google Scholar 

  49. Hinds S, Bian W, Dennis RG, Bursac N (2011) The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle. Biomaterials 32(14):3575–3583

    Article  CAS  Google Scholar 

  50. Howard L, Zheng Y, Horrocks M, Maciewicz RA, Blobel C (2001) Catalytic activity of ADAM28. FEBS Lett 498(1):82–86

    Article  CAS  Google Scholar 

  51. Van den Hu J, Steen PE, Houde M, Ilenchuk TT, Opdenakker G (2004) Inhibitors of gelatinase B/matrix metalloproteinase-9 activity comparison of a peptidomimetic and polyhistidine with single-chain derivatives of a neutralizing monoclonal antibody. Biochem Pharmacol 67(5):1001–1009

    Article  CAS  Google Scholar 

  52. Hubbell J (2006) Matrix-bound growth factors in tissue repair. Swiss Med Wkly 136(25–26): 387–391

    CAS  Google Scholar 

  53. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 27–38

    Article  CAS  Google Scholar 

  54. Hyer S, Wei S, Brew K, Acharya KR (2007) Crystal structure of the catalytic domain of matrix metalloproteinase-1 in complex with the inhibitory domain of tissue inhibitor of metalloproteinase-1. J Biol Chem 282(1):364–371

    Google Scholar 

  55. Janusz MJ, Hookfin EB, Brown KK, Hsieh LC, Heitmeyer SA, Taiwo YO et al (2006) Comparison of the pharmacology of hydroxamate- and carboxylate-based matrix metalloproteinase inhibitors (MMPIs) for the treatment of osteoarthritis. Inflamm Res 55(2):60–65

    Article  CAS  Google Scholar 

  56. Jayakumar P, Di Silvio L (2010) Osteoblasts in bone tissue engineering. Proc Inst Mech Eng H 224(12):1415–1440

    Article  CAS  Google Scholar 

  57. Jones KS (2008) Effects of biomaterial-induced inflammation on fibrosis and rejection. Semin Immunol 20(2):130–136

    Article  CAS  Google Scholar 

  58. Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120(3):577–585

    Article  CAS  Google Scholar 

  59. Karim RB, Brito BL, Dutrieux RP, Lassance FP, Hage JJ (2006) MMP-2 assessment as an indicator of wound healing: a feasibility study. Adv Skin Wound Care 19(6):324–327

    Article  Google Scholar 

  60. Kass L, Erler JT, Dembo M, Weaver VM (2007) Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int J Biochem Cell Biol 39(11):1987–1994

    Article  CAS  Google Scholar 

  61. Kataoka H (2009) EGFR ligands and their signaling scissors ADAMs as new molecular targets for anticancer treatments. J Dermatol Sci 56(3):148–153

    Article  CAS  Google Scholar 

  62. Khan OF, Jean-Francois J, Sefton MV (2010) MMP levels in the response to degradable implants in the presence of a hydroxamate-based matrix metalloproteinase sequestering ­biomaterial in vivo. J Biomed Mater Res A 93(4):1368–1379

    Google Scholar 

  63. Kimata M, Otani Y, Kubota T, Igarashi N, Yokoyama T, Wada N et al (2002) Matrix metalloproteinase inhibitor marimastat decreases peritoneal spread of gastric carcinoma in nude mice. Jpn J Cancer Res 93(7):834–841

    Article  CAS  Google Scholar 

  64. Kinoshita T, Sato H, Okada A, Ohuchi E, Imai K, Okada Y et al (1998) TIMP-2 promotes activation of progelatinase A by membrane-type 1 matrix metalloproteinase immobilized on agarose beads. J Biol Chem 273(26):16098–16103

    Article  CAS  Google Scholar 

  65. Kirkpatrick CJ, Krump-Konvalinkova V, Unger RE, Bittinger F, Otto M, Peters K (2002) Tissue response and biomaterial integration: the efficacy of in vitro methods. Biomol Eng 19(2–6):211–217

    Article  CAS  Google Scholar 

  66. Koltsova EK, Ley K (2010) The mysterious ways of the chemokine CXCL5. Immunity 33(1):7–9

    Article  CAS  Google Scholar 

  67. Kornberg L, Juliano RL (1992) Signal transduction from the extracellular matrix: the integrin-tyrosine kinase connection. Trends Pharmacol Sci 13(3):93–95

    Article  CAS  Google Scholar 

  68. Krane SM (1995) Is collagenase (matrix metalloproteinase-1) necessary for bone and other connective tissue remodeling? Clin Orthop Relat Res (313):47–53

    Google Scholar 

  69. Kruger A, Soeltl R, Sopov I, Kopitz C, Arlt M, Magdolen V et al (2001) Hydroxamate-type matrix metalloproteinase inhibitor batimastat promotes liver metastasis. Cancer Res 61(4):1272–1275

    CAS  Google Scholar 

  70. Kurizaki T, Toi M, Tominaga T (1998) Relationship between matrix metalloproteinase expression and tumor angiogenesis in human breast carcinoma. Oncol Rep 5(3):673–677

    CAS  Google Scholar 

  71. Lagente V, Boichot E (2008) Matrix metalloproteinases in tissue remodelling and inflammation. Birkhäuser, Basel; Boston

    Book  Google Scholar 

  72. Lew DH, Yoon JH, Hong JW, Tark KC (2010) Efficacy of antiadhesion barrier solution on periimplant capsule formation in a white rat model. Ann Plast Surg 65(2):254–258

    Article  CAS  Google Scholar 

  73. Li J, Zhang YP, Kirsner RS (2003) Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc Res Tech 60(1):107–114

    Article  CAS  Google Scholar 

  74. Madlener M, Parks WC, Werner S (1998) Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair. Exp Cell Res 242(1):201–210

    Article  CAS  Google Scholar 

  75. Maller O, Martinson H, Schedin P (2010) Extracellular matrix composition reveals complex and dynamic stromal-epithelial interactions in the mammary gland. J Mammary Gland Biol Neoplasia 15(3):301–318

    Article  Google Scholar 

  76. Manuel JA, Gawronska-Kozak B (2006) Matrix metalloproteinase 9 (MMP-9) is upregulated during scarless wound healing in athymic nude mice. Matrix Biol 25(8):505–514

    Article  CAS  Google Scholar 

  77. Matrisian LM, Wright J, Newell K, Witty JP (1994) Matrix-degrading metalloproteinases in tumor progression. Princess Takamatsu Symp 24:152–161

    CAS  Google Scholar 

  78. Metzmacher I, Ruth P, Abel M, Friess W (2007) In vitro binding of matrix metalloproteinase-2 (MMP-2) MMP-9 and bacterial collagenase on collagenous wound dressings. Wound Repair Regen 15(4):549–555

    Article  Google Scholar 

  79. Morrison CJ, Overall CM (2006) TIMP independence of matrix metalloproteinase (MMP)-2 activation by membrane type 2 (MT2)-MMP is determined by contributions of both the MT2-MMP catalytic and hemopexin C domains. J Biol Chem 281(36):26528–26539

    Article  CAS  Google Scholar 

  80. Muller M, Trocme C, Lardy B, Morel F, Halimi S, Benhamou PY (2008) Matrix metalloproteinases and diabetic foot ulcers: the ratio of MMP-1 to TIMP-1 is a predictor of wound healing. Diabet Med 25(4):419–426

    Article  CAS  Google Scholar 

  81. Murshed M, McKee MD (2010) Molecular determinants of extracellular matrix mineralization in bone and blood vessels. Curr Opin Nephrol Hypertens 19(4):359–365

    Article  CAS  Google Scholar 

  82. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274(31):21491–21494

    Article  CAS  Google Scholar 

  83. Nakamura Y, Sato K, Wakimoto N, Kimura F, Okuyama A, Motoyoshi K (2001) A new matrix metalloproteinase inhibitor SI-27 induces apoptosis in several human myeloid leukemia cell lines and enhances sensitivity to TNF alpha-induced apoptosis. Leukemia 15(8): 1217–1224

    Article  CAS  Google Scholar 

  84. Neamtu M, Filioreanu AM, Petreus T, Badescu L, Ionescu CR, Cotrutz CE (2010) Involvement of MMP-8 in tissue response to colagenated fibrillar net in rats. Ann Roman Soc Cell Biol 15(1):236–241

    Google Scholar 

  85. Nilsen-Hamilton M, Werb Z, Keshet E (2003) Tissue remodeling. New York Academy of Sciences, New York, NY

    Google Scholar 

  86. Nomura H, Fujimoto N, Seiki M, Mai M, Okada Y (1996) Enhanced production of matrix metalloproteinases and activation of matrix metalloproteinase 2 (gelatinase A) in human ­gastric carcinomas. Int J Cancer 69(1):9–16

    Article  CAS  Google Scholar 

  87. Overall CM, Kleifeld O (2006) Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6(3):227–239

    Article  CAS  Google Scholar 

  88. Parks WC, Mecham RP (1998) Matrix metalloproteinases. Academic, San Diego

    Google Scholar 

  89. Peled ZM, Phelps ED, Updike DL, Chang J, Krummel TM, Howard EW et al (2002) Matrix metalloproteinases and the ontogeny of scarless repair: the other side of the wound healing balance. Plast Reconstr Surg 110(3):801–811

    Article  Google Scholar 

  90. Pepper MS (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21(7):1104–1117

    Article  CAS  Google Scholar 

  91. Petreus T, Cotrutz CE, Neamtu M, Buruiana EC, Sirbu PD, Neamtu A (2010) Molecular docking on recomposed versus crystallographic structures of Zn-dependent enzymes and their natural inhibitors. Proc World Acad Sci Eng Technol 68:1992–1995

    Google Scholar 

  92. Petreus T, Cotrutz CE, Neamtu M, Buruiana EC, Sirbu PD, Neamtu A (2010) Understanding the dynamics–activity relationship in metalloproteases: ideas for new inhibition strategies. In: AT-EQUAL 2010: 2010 ECSIS Symposium on advanced technologies for enhanced quality of life: LAB-RS and ARTIPED 2010, pp 83–86

    Google Scholar 

  93. Ra HJ, Parks WC (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26(8):587–596

    Article  CAS  Google Scholar 

  94. Rasmussen HS, McCann PP (1997) Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. Pharmacol Ther 75(1):69–75

    Article  CAS  Google Scholar 

  95. Rayment EA, Upton Z, Shooter GK (2008) Increased matrix metalloproteinase-9 (MMP-9) activity observed in chronic wound fluid is related to the clinical severity of the ulcer. Br J Dermatol 158(5):951–961

    Article  CAS  Google Scholar 

  96. Reijerkerk A, Kooij G, van der Pol SM, Khazen S, Dijkstra CD, de Vries HE (2006) Diapedesis of monocytes is associated with MMP-mediated occludin disappearance in brain endothelial cells. FASEB J 20(14):2550–2552

    Article  CAS  Google Scholar 

  97. Reiter LA, Freeman-Cook KD, Jones CS, Martinelli GJ, Antipas AS, Berliner MA et al (2006) Potent selective pyrimidinetrione-based inhibitors of MMP-13. Bioorg Med Chem Lett 16(22):5822–5826

    Article  CAS  Google Scholar 

  98. Renault MA, Losordo DW (2007) The matrix revolutions: matrix metalloproteinase vasculogenesis and ischemic tissue repair. Circ Res 100(6):749–750

    Article  CAS  Google Scholar 

  99. Rodriguez R, Loske AM, Fernandez F, Estevez M, Vargas S, Fernandez G et al (2010) In vivo evaluation of implant-host tissue interaction using morphology-controlled hydroxyapatite-based biomaterials. J Biomater Sci Polym Ed 22(13):1799–1810

    Article  CAS  Google Scholar 

  100. Rosenblum G, Meroueh S, Toth M, Fisher JF, Fridman R, Mobashery S et al (2007) Molecular structures and dynamics of the stepwise activation mechanism of a matrix metalloproteinase zymogen: challenging the cysteine switch dogma. J Am Chem Soc 129(44):13566–13574

    Article  CAS  Google Scholar 

  101. Ruifrok AC, Katz RL, Johnston DA (2003) Comparison of quantification of histochemical staining by hue-saturation-intensity (HSI) transformation and color-deconvolution. Appl Immunohistochem Mol Morphol 11(1):85–91

    Article  CAS  Google Scholar 

  102. Rush TS 3rd, Powers R (2004) The application of x-ray NMR and molecular modeling in the design of MMP inhibitors. Curr Top Med Chem 4(12):1311–1327

    Article  CAS  Google Scholar 

  103. Salmela MT, Pender SL, Karjalainen-Lindsberg ML, Puolakkainen P, Macdonald TT, Saarialho-Kere U (2004) Collagenase-1 (MMP-1) matrilysin-1 (MMP-7) and stromelysin-2 (MMP-10) are expressed by migrating enterocytes during intestinal wound healing. Scand J Gastroenterol 39(11):1095–1104

    Article  CAS  Google Scholar 

  104. Salonurmi T, Parikka M, Kontusaari S, Pirila E, Munaut C, Salo T et al (2004) Overexpression of TIMP-1 under the MMP-9 promoter interferes with wound healing in transgenic mice. Cell Tissue Res 315(1):27–37

    Article  CAS  Google Scholar 

  105. Santos MA, Marques S, Gil M, Tegoni M, Scozzafava A, Supuran CT (2003) Protease inhibitors: synthesis of bacterial collagenase and matrix metalloproteinase inhibitors incorporating succinyl hydroxamate and iminodiacetic acid hydroxamate moieties. J Enzyme Inhib Med Chem 18(3):233–242

    Article  CAS  Google Scholar 

  106. Scatena R (2000) Prinomastat a hydroxamate-based matrix metalloproteinase inhibitor. A novel pharmacological approach for tissue remodelling-related diseases. Expert Opin Investig Drugs 9(9):2159–2165

    Article  CAS  Google Scholar 

  107. Shekaran A, Garcia AJ (2011) Extracellular matrix-mimetic adhesive biomaterials for bone repair. J Biomed Mater Res A 96(1):261–272

    Google Scholar 

  108. Steward WP, Thomas AL (2000) Marimastat: the clinical development of a matrix metalloproteinase inhibitor. Expert Opin Investig Drugs 9(12):2913–2922

    Article  CAS  Google Scholar 

  109. Stratmann B, Farr M, Tschesche H (2001) MMP-TIMP interaction depends on residue 2 in TIMP-4. FEBS Lett 507(3):285–287

    Article  CAS  Google Scholar 

  110. Sung HJ, Johnson CE, Lessner SM, Magid R, Drury DN, Galis ZS (2005) Matrix metalloproteinase 9 facilitates collagen remodeling and angiogenesis for vascular constructs. Tissue Eng 11(1–2):267–276

    Article  CAS  Google Scholar 

  111. Takahashi H, Akiba K, Noguchi T, Ohmura T, Takahashi R, Ezure Y et al (2000) Matrix metalloproteinase activity is enhanced during corneal wound repair in high glucose condition. Curr Eye Res 21(2):608–615

    Article  CAS  Google Scholar 

  112. Tang L, Eaton JW (1995) Inflammatory responses to biomaterials. Am J Clin Pathol 103(4):466–471

    CAS  Google Scholar 

  113. Tang L, Hu W (2005) Molecular determinants of biocompatibility. Expert Rev Med Devices 2(4):493–500

    Article  CAS  Google Scholar 

  114. Tanner KE (2010) Bioactive composites for bone tissue engineering. Proc Inst Mech Eng H 224(12):1359–1372

    Article  CAS  Google Scholar 

  115. Terasaki K, Kanzaki T, Aoki T, Iwata K, Saiki I (2003) Effects of recombinant human tissue inhibitor of metalloproteinases-2 (rh-TIMP-2) on migration of epidermal keratinocytes in vitro and wound healing in vivo. J Dermatol 30(3):165–172

    CAS  Google Scholar 

  116. Thevenot P, Hu W, Tang L (2008) Surface chemistry influences implant biocompatibility. Curr Top Med Chem 8(4):270–280

    Article  CAS  Google Scholar 

  117. Underwood CK, Min D, Lyons JG, Hambley TW (2003) The interaction of metal ions and Marimastat with matrix metalloproteinase 9. J Inorg Biochem 95(2–3):165–170

    Article  CAS  Google Scholar 

  118. Vaalamo M, Leivo T, Saarialho-Kere U (1999) Differential expression of tissue inhibitors of metalloproteinases (TIMP-1 -2 -3 and -4) in normal and aberrant wound healing. Hum Pathol 30(7):795–802

    Article  CAS  Google Scholar 

  119. Velasco G, Pendas AM, Fueyo A, Knauper V, Murphy G, Lopez-Otin C (1999) Cloning and characterization of human MMP-23 a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J Biol Chem 274(8):4570–4576

    Article  CAS  Google Scholar 

  120. Willenbrock F, Murphy G, Phillips IR, Brocklehurst K (1995) The second zinc atom in the matrix metalloproteinase catalytic domain is absent in the full-length enzymes: a possible role for the C-terminal domain. FEBS Lett 358(2):189–192

    Article  CAS  Google Scholar 

  121. Woessner JF Jr (1994) The family of matrix metalloproteinases. Ann N Y Acad Sci 732:11–21

    Article  CAS  Google Scholar 

  122. Woessner JF Jr (2001) That impish TIMP: the tissue inhibitor of metalloproteinases-3. J Clin Invest 108(6):799–800

    CAS  Google Scholar 

  123. Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45(1):160–169

    Article  CAS  Google Scholar 

  124. Wolber G, Seidel T, Bendix F, Langer T (2008) Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today 13(1–2):23–29

    Article  CAS  Google Scholar 

  125. Zhang W, Hou TJ, Qiao XB, Huai S, Xu XJ (2004) Binding affinity of hydroxamate inhibitors of matrix metalloproteinase-2. J Mol Model 10(2):112–120

    Article  CAS  Google Scholar 

  126. Zohny SF, Fayed ST (2010) Clinical utility of circulating matrix metalloproteinase-7 (MMP-7) CC chemokine ligand 18 (CCL18) and CC chemokine ligand 11 (CCL11) as markers for diagnosis of epithelial ovarian cancer. Med Oncol 27(4):1246–1253

    Article  CAS  Google Scholar 

  127. Zucker S, Drews M, Conner C, Foda HD, DeClerck YA, Langley KE et al (1998) Tissue inhibitor of metalloproteinase-2 (TIMP-2) binds to the catalytic domain of the cell surface receptor membrane type 1-matrix metalloproteinase 1 (MT1-MMP). J Biol Chem 273(2):1216–1222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tudor Petreus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Petreus, T., Antoniac, I., Sirbu, P., Cotrutz, C.E. (2013). Molecular Scissors: From Biomaterials Implant to Tissue Remodeling. In: Antoniac, I. (eds) Biologically Responsive Biomaterials for Tissue Engineering. Springer Series in Biomaterials Science and Engineering, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4328-5_2

Download citation

Publish with us

Policies and ethics