Skip to main content

Coordinated Regulation of Cardiac Na+/Ca2+ Exchanger and Na+-K+-ATPase by Phospholemman (FXYD1)

  • Chapter
  • First Online:
Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications

Abstract

Phospholemman (PLM) is the founding member of the FXYD family of regulators of ion transport. PLM is a 72-amino acid protein consisting of the signature PFXYD motif in the extracellular N terminus, a single transmembrane (TM) domain, and a C-terminal cytoplasmic tail containing three phosphorylation sites. In the heart, PLM co-localizes and co-immunoprecipitates with Na+-K+-ATPase, Na+/Ca2+ exchanger, and L-type Ca2+ channel. The TM domain of PLM interacts with TM9 of the α-subunit of Na+-K+-ATPase, while its cytoplasmic tail interacts with two small regions (spanning residues 248–252 and 300–304) of the proximal intracellular loop of Na+/Ca2+ exchanger. Under stress, catecholamine stimulation phosphorylates PLM at serine68, resulting in relief of inhibition of Na+-K+-ATPase by decreasing Km for Na+ and increasing Vmax, and simultaneous inhibition of Na+/Ca2+ exchanger. Enhanced Na+-K+-ATPase activity lowers intracellular Na+, thereby minimizing Ca2+ overload and risks of arrhythmias. Inhibition of Na+/Ca2+ exchanger reduces Ca2+ efflux, thereby preserving contractility. Thus, the coordinated actions of PLM during stress serve to minimize arrhythmogenesis and maintain inotropy. In acute cardiac ischemia and chronic heart failure, either expression or phosphorylation of PLM or both are altered. PLM regulates important ion transporters in the heart and offers a tempting target for development of drugs to treat heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • B.A. Ahlers, X.Q. Zhang, J.R. Moorman, L.I. Rothblum, L.L. Carl, J. Song, J. Wang, L.M. Geddis, A.L. Tucker, J.P. Mounsey, J.Y. Cheung, Identification of an endogenous inhibitor of the cardiac Na+/Ca2+ exchanger, phospholemman. J. Biol. Chem. 280, 19875–19882 (2005)

    Article  PubMed  CAS  Google Scholar 

  • A.J. Beevers, A. Kukol, Secondary structure, orientation, and oligomerization of phospholemman, a cardiac transmembrane protein. Protein Sci. 15, 1127–1132 (2006)

    Article  PubMed  CAS  Google Scholar 

  • A.J. Beevers, A. Kukol, Phospholemman transmembrane structure reveals potential interactions with Na+/K+-ATPase. J. Biol. Chem. 282, 32742–32748 (2007)

    Article  PubMed  CAS  Google Scholar 

  • J.R. Bell, E. Kennington, W. Fuller, K. Dighe, P. Donoghue, J.E. Clark, L.G. Jia, A.L. Tucker, J.R. Moorman, M.S. Marber, P. Eaton, M.J. Dunn, M.J. Shattock, Characterisation of the phospholemman knockout mouse heart: depressed left ventricular function with increased Na/K ATPase activity. Am. J. Physiol. Heart Circ. Physiol. 294, H613–H621 (2008)

    Article  PubMed  CAS  Google Scholar 

  • R.G. Berry, S. Despa, W. Fuller, D.M. Bers, M.J. Shattock, Differential distribution and regulation of mouse cardiac Na+/K+-ATPase alpha1 and alpha2 subunits in T-tubule and surface sarcolemmal membranes. Cardiovasc. Res. 73, 92–100 (2007)

    Article  PubMed  CAS  Google Scholar 

  • D.M. Bers, Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002)

    Article  PubMed  CAS  Google Scholar 

  • S. Bibert, C.C. Liu, G.A. Figtree, A. Garcia, E.J. Hamilton, F.M. Marassi, K.J. Sweadner, F. Cornelius, K. Geering, H.H. Rasmussen, FXYD proteins reverse inhibition of the Na+-K+ pump mediated by glutathionylation of its beta1 subunit. J. Biol. Chem. 286, 18562–18572 (2011)

    Article  PubMed  CAS  Google Scholar 

  • G. Blanco, R.W. Mercer, Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am. J. Physiol. 275, F633–F650 (1998)

    PubMed  CAS  Google Scholar 

  • M. Blaustein, W. Lederer, Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854 (1999)

    PubMed  CAS  Google Scholar 

  • J. Bossuyt, X. Ai, J.R. Moorman, S.M. Pogwizd, D.M. Bers, Expression and phosphorylation of the Na-pump regulatory subunit phospholemman in heart failure. Circ. Res. 97, 558–565 (2005)

    Article  PubMed  CAS  Google Scholar 

  • J. Bossuyt, S. Despa, J.L. Martin, D.M. Bers, Phospholemman phosphorylation alters its fluorescence resonance energy transfer with the Na/K-ATPase pump. J. Biol. Chem. 281, 32765–32773 (2006)

    Article  PubMed  CAS  Google Scholar 

  • J. Bossuyt, S. Despa, F. Han, Z. Hou, S.L. Robia, J.B. Lingrel, D.M. Bers, Isoform-specificity of the Na/K-ATPase association and regulation by phospholemman. J. Biol. Chem. 284, 26749–26757 (2009)

    Article  PubMed  CAS  Google Scholar 

  • L.S. Chen, C.F. Lo, R. Numann, M. Cuddy, Characterization of the human and rat phospholemman (PLM) cDNAs and localization of the human PLM gene to chromosome 19q13.1. Genomics 41, 435–443 (1997)

    Article  PubMed  CAS  Google Scholar 

  • Z. Chen, L.R. Jones, J.J. O’Brian, J.R. Moorman, S.E. Cala, Structural domains in phospholemman: a possible role for the carboxyl terminus in channel inactivation. Circ. Res. 82, 367–374 (1998)

    Article  PubMed  CAS  Google Scholar 

  • J. Cheung, X. Zhang, J. Song, E. Gao, J. Rabinowitz, T. Chan, J. Wang, Phospholemman: a novel cardiac stress protein. Clin. Transl. Sci. 3, 189–196 (2010)

    Article  PubMed  CAS  Google Scholar 

  • G. Crambert, M. Fuzesi, H. Garty, S. Karlish, K. Geering, Phospholemman (FXYD1) associates with Na,K-ATPase and regulates its transport properties. Proc. Natl. Acad. Sci. U. S. A. 99, 11476–11481 (2002)

    Article  PubMed  CAS  Google Scholar 

  • C.E. Davis, M.K. Patel, J.R. Miller, J.E. John 3rd, L.R. Jones, A.L. Tucker, J.P. Mounsey, J.R. Moorman, Effects of phospholemman expression on swelling-activated ion currents and volume regulation in embryonic kidney cells. Neurochem. Res. 29, 177–187 (2004)

    Article  PubMed  CAS  Google Scholar 

  • S. Despa, M.A. Islam, S.M. Pogwizd, D.M. Bers, Intracellular [Na+] and Na+ pump rate in rat and rabbit ventricular myocytes. J. Physiol. 539, 133–143 (2002)

    Article  PubMed  CAS  Google Scholar 

  • S. Despa, J. Bossuyt, F. Han, K.S. Ginsburg, L.G. Jia, H. Kutchai, A.L. Tucker, D.M. Bers, Phospholemman-phosphorylation mediates the beta-adrenergic effects on Na/K pump function in cardiac myocytes. Circ. Res. 97, 252–259 (2005)

    Article  PubMed  CAS  Google Scholar 

  • S. Despa, A. Tucker, D. Bers, PLM-mediated activation of Na/K-ATPase limits [Na]i and inotropic state during B-adrenergic stimulation in mouse ventricular myocytes. Circulation 117, 1849–1855 (2008)

    Article  PubMed  CAS  Google Scholar 

  • R. DiPolo, L. Beauge, Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol. Rev. 86, 155–203 (2006)

    Article  PubMed  CAS  Google Scholar 

  • I.M.C. Dixon, T. Hata, N.S. Dhalla, Sarcolemmal calcium transport in congestive heart failure due to myocardial infarction in rats. Am. J. Physiol. Heart Circ. Physiol. 262, H1387–H1394 (1992a)

    CAS  Google Scholar 

  • I.M.C. Dixon, T. Hata, N.S. Dhalla, Sarcolemmal Na+-K+-ATPase activity in congestive heart failure due to myocardial infarction. Am. J. Physiol. Cell Physiol. 262, C664–C671 (1992b)

    CAS  Google Scholar 

  • I. Dostanic, J. Schultz Jel, J.N. Lorenz, J.B. Lingrel, The alpha 1 isoform of Na, K-ATPase regulates cardiac contractility and functionally interacts and co-localizes with the Na/Ca exchanger in heart. J. Biol. Chem. 279, 54053–54061 (2004)

    Article  PubMed  CAS  Google Scholar 

  • G.A. Figtree, C.C. Liu, S. Bibert, E.J. Hamilton, A. Garcia, C.N. White, K.K. Chia, F. Cornelius, K. Geering, H.H. Rasmussen, Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation. Circ. Res. 105, 185–193 (2009)

    Article  PubMed  CAS  Google Scholar 

  • C.M. Franzin, X.M. Gong, K. Thai, J. Yu, F.M. Marassi, NMR of membrane proteins in micelles and bilayers: the FXYD family proteins. Methods (San Diego, Calif.) 41, 398–408 (2007)

    Article  CAS  Google Scholar 

  • W. Fuller, P. Eaton, J.R. Bell, M.J. Shattock, Ischemia-induced phosphorylation of phospholemman directly activates rat cardiac Na/K-ATPase. FASEB J. 18, 197–199 (2004)

    PubMed  CAS  Google Scholar 

  • W. Fuller, J. Howie, L. McLatchie, R. Weber, C.J. Hastie, K. Burness, D. Pavlovic, M.J. Shattock, FXYD1 phosphorylation in vitro and in adult rat cardiac myocytes: threonine 69 is a novel substrate for protein kinase C. Am. J. Physiol. Cell Physiol. 296, C1346–C1355 (2009)

    Article  PubMed  CAS  Google Scholar 

  • M. Giladi, L. Boyman, H. Mikhasenko, R. Hiller, D. Khananshvili, Essential role of the CBD1-CBD2 linker in slow dissociation of Ca2+ from the regulatory two-domain tandem of NCX1. J. Biol. Chem. 285, 28117–28125 (2010)

    Article  PubMed  CAS  Google Scholar 

  • I. Grupp, W.-B. Im, C.O. Lee, S.-W. Lee, M.S. Pecker, A. Schwartz, Regulation of sodium pump inhibition to positive inotrophy at low concentrations of ouabain in rat heart muscle. J. Physiol. 360, 149–160 (1985)

    PubMed  CAS  Google Scholar 

  • F. Han, A.L. Tucker, J.B. Lingrel, S. Despa, D.M. Bers, Extracellular potassium dependence of the Na+-K+-ATPase in cardiac myocytes: isoform specificity and effect of phospholemman. Am. J. Physiol. Cell Physiol. 297, C699–C705 (2009)

    Article  PubMed  CAS  Google Scholar 

  • G. Hasenfuss, W. Schillinger, Is modulation of sodium-calcium exchange a therapeutic option in heart failure? Circ. Res. 95, 225–227 (2004)

    Article  PubMed  CAS  Google Scholar 

  • M. Hilge, J. Aelen, G.W. Vuister, Ca2+ regulation in the Na+/Ca2+ exchanger involves two markedly different Ca2+ sensors. Mol. Cell 22, 15–25 (2006)

    Article  PubMed  CAS  Google Scholar 

  • M. Hilge, J. Aelen, A. Foarce, A. Perrakis, G.W. Vuister, Ca2+ regulation in the Na+/Ca2+ exchanger features a dual electrostatic switch mechanism. Proc. Natl. Acad. Sci. U. S. A. 106, 14333–14338 (2009)

    Article  PubMed  CAS  Google Scholar 

  • T. Iwamoto, A. Uehara, I. Imanaga, M. Shigekawa, The Na+/Ca2+ exchanger NCX1 has oppositely oriented reentrant loop domains that contain conserved aspartic acids whose mutation alters its apparent Ca2+ affinity. J. Biol. Chem. 275, 38571–38580 (2000)

    Article  PubMed  CAS  Google Scholar 

  • P.F. James, I.L. Grupp, G. Grupp, A.L. Woo, G.R. Askew, M.L. Croyle, R.A. Walsh, J.B. Lingrel, Identification of a specific role for the Na, K-ATPase alpha 2 isoform as a regulator of calcium in the heart. Mol. Cell 3, 555–563 (1999)

    Article  PubMed  CAS  Google Scholar 

  • L.G. Jia, C. Donnet, R.C. Bogaev, R.J. Blatt, C.E. McKinney, K.H. Day, S.S. Berr, L.R. Jones, J.R. Moorman, K.J. Sweadner, A.L. Tucker, Hypertrophy, increased ejection fraction, and reduced Na-K-ATPase activity in phospholemman-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 288, H1982–H1988 (2005)

    Article  PubMed  CAS  Google Scholar 

  • S.A. John, B. Ribalet, J.N. Weiss, K.D. Philipson, M. Ottolia, Ca2+-dependent structural rearrangements within Na+-Ca2+ exchanger dimers. Proc. Natl. Acad. Sci. U. S. A. 108, 1699–1704 (2011)

    Article  PubMed  CAS  Google Scholar 

  • D.O. Levitsky, D.A. Nicoll, K.D. Philipson, Identification of the high affinity Ca2+-binding domain of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 269, 22847–22852 (1994)

    PubMed  CAS  Google Scholar 

  • Z.P. Li, D.A. Nicoll, A. Collins, D.W. Hilgemann, A.G. Filoteo, J.T. Penniston, J.N. Weiss, J.M. Tomich, K.D. Philipson, Identification of a peptide inhibitor of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem. 266, 1014–1020 (1991)

    PubMed  CAS  Google Scholar 

  • C. Li, A. Grosdidier, G. Crambert, J.D. Horisberger, O. Michielin, K. Geering, Structural and functional interaction sites between Na, K-ATPase and FXYD proteins. J. Biol. Chem. 279, 38895–38902 (2004)

    Article  PubMed  CAS  Google Scholar 

  • J.P. Lindemann, Alpha-adrenergic stimulation of sarcolemmal protein phosphorylation and slow responses in intact myocardium. J. Biol. Chem. 261, 4860–4867 (1986)

    PubMed  CAS  Google Scholar 

  • M. Lindzen, K.E. Gottschalk, M. Fuzesi, H. Garty, S.J. Karlish, Structural interactions between FXYD proteins and Na+, K  +  -ATPase: alpha/beta/FXYD subunit stoichiometry and cross-linking. J. Biol. Chem. 281, 5947–5955 (2006)

    Article  PubMed  CAS  Google Scholar 

  • C. Maack, A. Ganesan, A. Sidor, B. O’Rourke, Cardiac sodium-calcium exchanger is regulated by allosteric calcium and exchanger inhibitory peptide at distinct sites. Circ. Res. 96, 91–99 (2005)

    Article  PubMed  CAS  Google Scholar 

  • M. Madhani, A.R. Hall, F. Cuello, R.L. Charles, J.R. Burgoyne, W. Fuller, A.J. Hobbs, M.J. Shattock, P. Eaton, Phospholemman Ser-69 phosphorylation contributes to sildenafil-induced cardioprotection against reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 299, H827–H836 (2010)

    Article  PubMed  CAS  Google Scholar 

  • Y.A. Mahmmoud, H. Vorum, F. Cornelius, Purification of a phospholemman-like protein from shark rectal glands. J. Biol. Chem. 275, 35969–35977 (2000)

    Article  PubMed  CAS  Google Scholar 

  • S. Matsuoka, D.A. Nicoll, L.V. Hryshko, D.O. Levitsky, J.N. Weiss, K.D. Philipson, Regulation of the cardiac Na+-Ca2+ exchanger by Ca2+. Mutational analysis of the Ca2+-binding domain. J. Gen. Physiol. 105, 403–420 (1995)

    Article  PubMed  CAS  Google Scholar 

  • A.A. McDonough, Y. Zhang, V. Shin, J.S. Frank, Subcellular distribution of sodium pump isoform subunits in mammalian cardiac myocytes. Am. J. Physiol. Cell Physiol. 270, C1221–C1227 (1996)

    CAS  Google Scholar 

  • M.A. Mirza, X.Q. Zhang, B.A. Ahlers, A. Qureshi, L.L. Carl, J. Song, A.L. Tucker, J.P. Mounsey, J.R. Moorman, L.I. Rothblum, T.S. Zhang, J.Y. Cheung, Effects of phospholemman downregulation on contractility and [Ca2+]i transients in adult rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 286, H1322–H1330 (2004)

    Article  PubMed  CAS  Google Scholar 

  • J.R. Moorman, S.J. Ackerman, G.C. Kowdley, M. Griffin, J.P. Mounsey, Z. Chen, S.E. Cala, J.J. O’Brian, G. Szabo, L.R. Jones, Unitary onion currents through phospholemman channel molecules. Nature 377, 737–740 (1995)

    Article  PubMed  CAS  Google Scholar 

  • M. Morales-Mulia, H. Pasantes-Morales, J. Moran, Volume sensitive efflux of taurine in HEK 293 cells overexpressing phospholemman. Biochim. Biophys. Acta 1496, 252–260 (2000)

    Article  PubMed  CAS  Google Scholar 

  • J.S. Nam, S. Hirohashi, L.M. Wakefield, Dysadherin: a new player in cancer progression. Cancer lett. 255, 161–169 (2007)

    Article  PubMed  CAS  Google Scholar 

  • D.A. Nicoll, L.V. Hryshko, S. Matsuoka, J.S. Frank, K.D. Philipson, Mutation of amino acid residues in the putative transmembrane segments of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem. 271, 13385–13391 (1996)

    Article  PubMed  CAS  Google Scholar 

  • D.A. Nicoll, M. Ottolia, L. Lu, Y. Lu, K.D. Philipson, A new topological model of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem. 274, 910–917 (1999)

    Article  PubMed  CAS  Google Scholar 

  • D.A. Nicoll, M.R. Sawaya, S. Kwon, D. Cascio, K.D. Philipson, J. Abramson, The crystal structure of the primary Ca2+ sensor of the Na+/Ca2+ exchanger reveals a novel Ca2+ binding motif. J. Biol. Chem. 281, 21577–21581 (2006)

    Article  PubMed  CAS  Google Scholar 

  • M. Ottolia, S. John, Z. Qiu, K.D. Philipson, Split Na+-Ca2+ exchangers. Implications for function and expression. J. Biol. Chem. 276, 19603–19609 (2001)

    Article  PubMed  CAS  Google Scholar 

  • M. Ottolia, D.A. Nicoll, K.D. Philipson, Roles of two Ca2+-binding domains in regulation of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 284, 32735–32741 (2009)

    Article  PubMed  CAS  Google Scholar 

  • C.J. Palmer, B.T. Scott, L.R. Jones, Purification and complete sequence determination of the major plasma membrane substrate for cAMP-dependent protein kinase and protein kinase C in myocardium. J. Biol. Chem. 266, 11126–11130 (1991)

    PubMed  CAS  Google Scholar 

  • K.D. Philipson, D.A. Nicoll, Sodium-calcium exchange: a molecular perspective. Annu. Rev. Physiol. 62, 111–133 (2000)

    Article  PubMed  CAS  Google Scholar 

  • S.M. Pogwizd, K. Schlotthauer, L. Li, W. Yuan, D.M. Bers, Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ. Res. 88, 1159–1167 (2001)

    Article  PubMed  CAS  Google Scholar 

  • C.F. Presti, L.R. Jones, J.P. Lindemann, Isoproterenol-induced phosphorylation of a 15-kilodalton sarcolemmal protein in intact myocardium. J. Biol. Chem. 260, 3860–3867 (1985a)

    PubMed  CAS  Google Scholar 

  • C.F. Presti, B.T. Scott, L.R. Jones, Identification of an endogenous protein kinase C activity and its intrinsic 15-kilodalton substrate in purified canine cardiac sarcolemmal vesicles. J. Biol. Chem. 260, 13879–13889 (1985b)

    PubMed  CAS  Google Scholar 

  • C.M. Rembold, M.L. Ripley, M.K. Meeks, L.M. Geddis, H.C. Kutchai, F.M. Marassi, J.Y. Cheung, J.R. Moorman, Serine 68 phospholemman phosphorylation during forskolin-induced swine carotid artery relaxation. J. Vasc. Res. 42, 483–491 (2005)

    Article  PubMed  CAS  Google Scholar 

  • X. Ren, D.A. Nicoll, G. Galang, K.D. Philipson, Intermolecular cross-linking of Na+-Ca2+ exchanger proteins: evidence for dimer formation. Biochemistry 47, 6081–6087 (2008)

    Article  PubMed  CAS  Google Scholar 

  • P.D. Sehl, J.T. Tai, K.J. Hillan, L.A. Brown, A. Goddard, R. Yang, H. Jin, D.G. Lowe, Application of cDNA microarrays in determining molecular phenotype in cardiac growth, development, and response to injury. Circulation 101, 1990–1999 (2000)

    Article  PubMed  CAS  Google Scholar 

  • T. Shinoda, H. Ogawa, F. Cornelius, C. Toyoshima, Crystal structure of the sodium-potassium pump at 2.4 A resolution. Nature 459, 446–450 (2009)

    Article  PubMed  CAS  Google Scholar 

  • B.D. Silverman, W. Fuller, P. Eaton, J. Deng, J.R. Moorman, J.Y. Cheung, A.F. James, M.J. Shattock, Serine 68 phosphorylation of phospholemman: acute isoform-specific activation of cardiac Na/K ATPase. Cardiovasc. Res. 65, 93–103 (2005)

    Article  PubMed  CAS  Google Scholar 

  • K.R. Sipido, P.G.A. Volders, M.A. Vos, F. Verdonck, Altered Na/Ca exchange activity in cardiac hypertrophy and heart failure: a new target for therapy? Cardiovasc. Res. 53, 782–805 (2002)

    Article  PubMed  CAS  Google Scholar 

  • J. Song, X.Q. Zhang, L.L. Carl, A. Qureshi, L.I. Rothblum, J.Y. Cheung, Overexpression of phospholemman alter contractility and [Ca2+]i transients in adult rat myocytes. Am. J. Physiol. Heart Circ. Physiol. 283, H576–H583 (2002)

    PubMed  CAS  Google Scholar 

  • J. Song, X.Q. Zhang, B.A. Ahlers, L.L. Carl, J. Wang, L.I. Rothblum, R.C. Stahl, J.P. Mounsey, A.L. Tucker, J.R. Moorman, J.Y. Cheung, Serine 68 of phospholemman is critical in modulation of contractility, [Ca2+]i transients, and Na+/Ca2+ exchange in adult rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 288, H2342–H2354 (2005)

    Article  PubMed  CAS  Google Scholar 

  • J. Song, X.Q. Zhang, J. Wang, E. Cheskis, T.O. Chan, A.M. Feldman, A.L. Tucker, J.Y. Cheung, Regulation of cardiac myocyte contractility by phospholemman: Na+/Ca2+ exchange vs. Na+-K+-ATPase. Am. J. Physiol. Heart Circ. Physiol. 295, H1615–H1625 (2008)

    Article  PubMed  CAS  Google Scholar 

  • Q. Song, S. Pallikkuth, J. Bossuyt, D.M. Bers, S.L. Robia, Phosphomimetic mutations enhance oligomerization of phospholemman and modulate its interaction with the Na/K-ATPase. J. Biol. Chem. 286, 9120–9126 (2011)

    Article  PubMed  CAS  Google Scholar 

  • K.J. Sweadner, E. Rael, The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics 68, 41–56 (2000)

    Article  PubMed  CAS  Google Scholar 

  • F. Swift, N. Tovsrud, U.H. Enger, I. Sjaastad, O.M. Sejersted, The Na+/K+-ATPase alpha2-isoform regulates cardiac contractility in rat cardiomyocytes. Cardiovasc. Res. 75, 109–117 (2007)

    Article  PubMed  CAS  Google Scholar 

  • G.M. Tadros, X.Q. Zhang, J. Song, L.L. Carl, L.I. Rothblum, Q. Tian, J. Dunn, J. Lytton, J.Y. Cheung, Effects of Na+/Ca2+ exchanger downregulation on contractility and [Ca2+](i) transients in adult rat myocytes. Am. J. Physiol. Heart Circ. Physiol. 283, H1616–H1626 (2002)

    PubMed  CAS  Google Scholar 

  • P. Teriete, C.M. Franzin, J. Choi, F.M. Marassi, Structure of the Na, K-ATPase regulatory protein FXYD1 in micelles. Biochemistry 46, 6774–6783 (2007)

    Article  PubMed  CAS  Google Scholar 

  • P. Teriete, K. Thai, J. Choi, F.M. Marassi, Effects of PKA phosphorylation on the conformation of the Na, K-ATPase regulatory protein FXYD1. Biochim. Biophys. Acta 1788, 2462–2470 (2009)

    Article  PubMed  CAS  Google Scholar 

  • A.L. Tucker, J. Song, X.Q. Zhang, J. Wang, B.A. Ahlers, L.L. Carl, J.P. Mounsey, J.R. Moorman, L.I. Rothblum, J.Y. Cheung, Altered contractility and [Ca2+]i homeostasis in phospholemman-deficient murine myocytes: Role of Na+/Ca2+ exchange. Am. J. Physiol. Heart Circ. Physiol. 291, H2199–H2209 (2006)

    Article  PubMed  CAS  Google Scholar 

  • S.I. Waalas, A.J. Czernik, O.K. Olstad, K. Sletten, O. Walaas, Protein kinase C and cyclic AMP-dependent protein kinase phosphorylate phospholemman, an insulin and adrenaline-regulated membrane phosphoprotein, at specific sites in the carboxy terminal domain. Biochem. J. 304(Pt 2), 635–640 (1994)

    Google Scholar 

  • J. Wang, X.Q. Zhang, B.A. Ahlers, L.L. Carl, J. Song, L.I. Rothblum, R.C. Stahl, D.J. Carey, J.Y. Cheung, Cytoplasmic tail of phospholemman interacts with the intracellular loop of the cardiac Na+/Ca2+ exchanger. J. Biol. Chem. 281, 32004–32014 (2006)

    Article  PubMed  CAS  Google Scholar 

  • J. Wang, E. Gao, J. Song, X.Q. Zhang, J. Li, W.J. Koch, A.L. Tucker, K.D. Philipson, T.O. Chan, A.M. Feldman, J.Y. Cheung, Phospholemman and {beta}-adrenergic stimulation in the heart. Am. J. Physiol. Heart Circ. Physiol. 298, H807–H815 (2010a)

    Article  PubMed  CAS  Google Scholar 

  • X. Wang, G. Gao, K. Guo, V. Yarotskyy, C. Huang, K.S. Elmslie, B.Z. Peterson, Phospholemman modulates the gating of cardiac L-type calcium channels. Biophys. J. 98, 1149–1159 (2010b)

    Article  PubMed  CAS  Google Scholar 

  • J. Wang, E. Gao, J. Rabinowitz, J. Song, X.Q. Zhang, W.J. Koch, A.L. Tucker, T.O. Chan, A.M. Feldman, J.Y. Cheung, Regulation of in vivo cardiac contractility by phospholemman: role of Na+/Ca2+ exchange. Am. J. Physiol. Heart Circ. Physiol. 300, H859–H868 (2011)

    Article  PubMed  CAS  Google Scholar 

  • M. William, J. Vien, E. Hamilton, A. Garcia, H. Bundgaard, R.J. Clarke, H.H. Rasmussen, The nitric oxide donor sodium nitroprusside stimulates the Na+-K+ pump in isolated rabbit cardiac myocytes. J. Physiol. 565, 815–825 (2005)

    Article  PubMed  CAS  Google Scholar 

  • H. Yamamoto, K. Okumura, S. Toshima, K. Mukaisho, H. Sugihara, T. Hattori, M. Kato, S. Asano, FXYD3 protein involved in tumor cell proliferation is overproduced in human breast cancer tissues. Biol. Pharm. Bull. 32, 1148–1154 (2009)

    Article  PubMed  CAS  Google Scholar 

  • R. Zahler, M. Gilmore-Hebert, J.C. Baldwin, K. Franco, E.J. Benz Jr., Expression of alpha isoforms of the Na, K-ATPase in human heart. Biochim. Biophys. Acta 1149, 189–194 (1993)

    Article  PubMed  CAS  Google Scholar 

  • X. Zhang, D. Tillotson, R. Moore, R. Zelis, J. Cheung, Na+/Ca2+ exchange currents and SR Ca2+ contents in postinfarction myocytes. Am. J. Physiol. 271, C1800–C1807 (1996)

    PubMed  CAS  Google Scholar 

  • X.Q. Zhang, A. Qureshi, J. Song, L.L. Carl, Q. Tian, R.C. Stahl, D.J. Carey, L.I. Rothblum, J.Y. Cheung, Phospholemman modulates Na+/Ca2+ exchange in adult rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 284, H225–H233 (2003)

    PubMed  CAS  Google Scholar 

  • X.Q. Zhang, B.A. Ahlers, A.L. Tucker, J. Song, J. Wang, J.R. Moorman, J.P. Mounsey, L.L. Carl, L.I. Rothblum, J.Y. Cheung, Phospholemman inhibition of the cardiac Na+/Ca2+ exchanger. Role of phosphorylation. J. Biol. Chem. 281, 7784–7792 (2006a)

    Article  PubMed  CAS  Google Scholar 

  • X.Q. Zhang, J.R. Moorman, B.A. Ahlers, L.L. Carl, D.E. Lake, J. Song, J.P. Mounsey, A.L. Tucker, Y.M. Chan, L.I. Rothblum, R.C. Stahl, D.J. Carey, J.Y. Cheung, Phospholemman overexpression inhibits Na+-K+-ATPase in adult rat cardiac myocytes: relevance to decreased Na+ pump activity in post-infarction myocytes. J. Appl. Physiol. 100, 212–220 (2006b)

    Article  PubMed  CAS  Google Scholar 

  • X.Q. Zhang, J. Wang, L.L. Carl, J. Song, B.A. Ahlers, J.Y. Cheung, Phospholemman regulates cardiac Na+/Ca2+ exchanger by interacting with the exchanger’s proximal linker domain. Am. J. Physiol. Cell Physiol. 296, C911–C921 (2009)

    Article  PubMed  CAS  Google Scholar 

  • X.Q. Zhang, J. Wang, J. Song, A.M. Ji, T.O. Chan, J.Y. Cheung, Residues 248–252 and 300–304 of the cardiac Na+/Ca2+ exchanger are involved in its regulation by phospholemman. Am. J. Physiol. Cell Physiol. 301, C833–C840 (2011)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institutes of Health grants RO1-HL58672 and RO1-HL74854 (JYC); RO1-HL91096 (JER); RO1-HL56205, RO1-HL-61690, RO1-HL85503, PO1-HL-75443, and PO1-HL-91799 (WJK); and PO1-HL-91799 (AMF) and by American Heart Association Scientist Development grant F64702 (TOC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Y. Cheung M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cheung, J.Y. et al. (2013). Coordinated Regulation of Cardiac Na+/Ca2+ Exchanger and Na+-K+-ATPase by Phospholemman (FXYD1). In: Annunziato, L. (eds) Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications. Advances in Experimental Medicine and Biology, vol 961. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4756-6_15

Download citation

Publish with us

Policies and ethics