Skip to main content

Global Geodesic Properties of Gödel-type SpaceTimes

  • Conference paper
  • First Online:
Recent Trends in Lorentzian Geometry

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 26))

  • 940 Accesses

Abstract

The aim of this chapter is to review and complete the study of geodesics on Gödel-type spacetimes from a variational viewpoint in the last decade (say, from [10] to [2]). In particular, we prove some new results on geodesic connectedness and geodesic completeness for these spacetimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartolo, R., Candela, A.M., Flores, J.L.: Geodesic connectedness of stationary spacetimes with optimal growth. J. Geom. Phys. 56, 2025–2038 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartolo, R., Candela, A.M., Flores, J.L.: A note on geodesic connectedness in Gödel type spacetimes. Differ. Geom. Appl. 29, 779–786 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartolo, R., Candela, A.M., Flores, J.L., Sánchez, M.: Geodesics in static Lorentzian manifolds with critical quadratic behavior. Adv. Nonlinear Stud. 3, 471–494 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Benci, V., Fortunato, D.: On the existence of infinitely many geodesics on space–time manifolds. Adv. Math. 105, 1–25 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benci, V., Fortunato, D., Giannoni, F.: On the existence of multiple geodesics in static space–times. Ann. Inst. H. Poincaré Anal. Non Linéaire 8, 79–102 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Calvão, M.O., Damião Soares, I., Tiomno, J.: Geodesics in Gödel–type space–times. Gen. Relat. Gravit. 22, 683–705 (1990)

    Article  MATH  Google Scholar 

  7. Candela, A.M., Flores, J.L., Sánchez, M.: On general Plane Fronted Waves. Geodesics. Gen. Relat. Gravit. 35, 631–649 (2003)

    Article  MATH  Google Scholar 

  8. Candela, A.M., Flores, J.L., Sánchez, M.: Global hyperboliticity and Palais–Smale condition for action functionals in stationary spacetimes. Adv. Math. 218, 515–536 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Candela, A.M., Romero, A., Sánchez, M.: Completeness of the trajectories of particles coupled to a general force field. To appear in Arch. Rational Mech. Anal. ArXiv:1202.0523v1.

    Google Scholar 

  10. Candela, A.M., Sánchez, M.: Geodesic connectedness in Gödel type space–times. Differ. Geom. Appl. 12, 105–120 (2000)

    Article  MATH  Google Scholar 

  11. Candela, A.M., Sánchez, M.: Existence of geodesics in Gödel type space–times. Nonlinear Anal. TMA 47, 1581–1592 (2001)

    Article  MATH  Google Scholar 

  12. Candela, A.M., Sánchez, M.: Geodesics in semi–Riemannian manifolds: geometric properties and variational tools. In: Alekseevsky, D.V., Baum, H. (eds.) Recent Developments in Pseudo–Riemannian Geometry, Special Volume in the ESI–Series on Mathematics and Physics, pp. 359–418, EMS Publishing House (2008)

    Google Scholar 

  13. Candela, A.M., Salvatore, A., Sánchez, M.: Periodic trajectories in Gödel type space–times. Nonlinear Anal. TMA 51, 607–631 (2002)

    Article  MATH  Google Scholar 

  14. Caponio, E., Javaloyes M.A., Sánchez, M.: On the interplay between Lorentzian causality and Finsler metrics of Randers type. Rev. Mat. Iberoam. 27, 919–952 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carrion, H.L., Rebouças, M.J., Teixeira, A.F.F.: Gödel–type space–times in induced matter gravity theory. J. Math. Phys. 40, 4011–4027 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chandrasekhar, S., Wright, J.P.: The geodesics in Gödel’s universe. Proc. Natl. Acad. Sci. USA 47, 341–347 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giannoni, F., Masiello, A.: On the existence of geodesics on stationary Lorentz manifolds with convex boundary. J. Funct. Anal. 101, 340–369 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gödel, K.: An example of a new type of cosmological solution of Einstein’s field equations of gravitation. Rev. Mod. Phys. 21, 447–450 (1949)

    Article  MATH  Google Scholar 

  19. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space–Time. Cambridge University Press, London (1973)

    Book  MATH  Google Scholar 

  20. Kramer, D., Stephani, H., Herlt, E., MacCallum, M.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

  21. Kundt, W.: Trägheitsbahnen in einem von Gödel angegebenen kosmologischen Modell. Z. Phys. 145, 611–620 (1956)

    Article  Google Scholar 

  22. Masiello, A.: Variational Methods in Lorentzian Geometry. Pitman Res. Notes Math. Ser. vol. 309. Longman Sci. Tech., Harlow (1994)

    Google Scholar 

  23. Müller, O.: A note on closed isometric embeddings. J. Math. Anal. Appl. 349, 297–298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nash, J.: The imbedding problem for Riemannian manifold. Ann. Math. 63, 20–63 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  25. O’Neill, B.: Semi–Riemannian Geometry with Applications to Relativity. Academic, New York (1983)

    MATH  Google Scholar 

  26. Piccione, P., Tausk, D.V.: An index theory for paths that are solutions of a class of strongly indefinite variational problems. Calc. Var. Part. Differ. Equat. 15, 529–551 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Reg. Conf. Ser. Math. vol. 65. Amer. Math. Soc., Providence (1986)

    Google Scholar 

  28. Raychaudhuri, A.K., Thakurta, S.N.G.: Homogeneous space-times of the Gödel type. Phys. Rev. D 22, 802–806 (1980)

    Article  Google Scholar 

  29. Rebouças, M.J., Tiomno, J.: Homogeneity of Riemannian space–times of Gödel type. Phys. Rev. D 28, 1251–1264 (1983)

    Article  MathSciNet  Google Scholar 

  30. Sánchez, M.: Some Remarks on Causality Theory and Variational Methods in Lorentzian Manifolds. Conf. Semin. Mat. Univ. Bari 265 (1997) ArXiv:0712.0600v2

    Google Scholar 

  31. Santaló, L.A.: Geodesics in Gödel–Synge spaces. Tensor N.S. 37, 173–178 (1982)

    Google Scholar 

Download references

Acknowledgements

The authors of this chapter acknowledge the partial support of the Spanish Grants with FEDER funds MTM2010-18099 (MICINN). Furthermore, R. Bartolo and A.M. Candela acknowledge also the partial support of M.I.U.R. Research Project PRIN2009 “Metodi Variazionali e Topologici nello Studio di Fenomeni Nonlineari” and of the G.N.A.M.P.A. Research Project 2011 “Analisi Geometrica sulle Varietà di Lorentz ed Applicazioni alla Relatività Generale”; J.L. Flores acknowledges also the partial support of the Regional J. Andalucía Grant P09-FQM-4496, with FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossella Bartolo .

Editor information

Editors and Affiliations

1 Appendix

Taking a connected, finite–dimensional semi–Riemannian manifold \((\mathcal{M},g)\), let \({H}^{1}(I,\mathcal{M})\) be the associated Sobolev space for some auxiliar Riemannian metric on \(\mathcal{M}\). Then, \({H}^{1}(I,\mathcal{M})\) is equipped with a structure of infinite–dimensional manifold modelled on the Hilbert space \({H}^{1}(I, {\mathbb{R}}^{n})\). For any \(z \in {H}^{1}(I,\mathcal{M})\), the tangent space of \({H}^{1}(I,\mathcal{M})\) at z can be written as follows:

$${T}_{z}{H}^{1}(I,\mathcal{M}) =\{ \zeta \in {H}^{1}(I,T\mathcal{M}) : \zeta (s) \in {T}_{ z(s)}\mathcal{M}\;\text{ for all}s \in I\},$$
where \(T\mathcal{M}\) is the tangent bundle of \(\mathcal{M}\).

If \(\mathcal{M}\) splits globally in the product of two semi–Riemannian manifolds \({\mathcal{M}}_{1}\) and \({\mathcal{M}}_{2}\), i.e. \(\mathcal{M} = {\mathcal{M}}_{1} \times {\mathcal{M}}_{2}\), then

$${H}^{1}(I,\mathcal{M}) \equiv {H}^{1}(I,{\mathcal{M}}_{ 1}) \times {H}^{1}(I,{\mathcal{M}}_{ 2})$$
and \({T}_{z}{H}^{1}(I,\mathcal{M}) \equiv {T}_{{z}_{1}}{H}^{1}(I,{\mathcal{M}}_{1}) \times {T}_{{z}_{2}}{H}^{1}(I,{\mathcal{M}}_{2})\) for all \(z = ({z}_{1},{z}_{2}) \in \mathcal{M}\).

On the other hand, if \(({\mathcal{M}}_{0},\langle \cdot,{\cdot \rangle }_{R})\) is a C 3 complete Riemannian manifold, it can be smoothly and isometrically embedded in a Euclidean space \({\mathbb{R}}^{N}\) (see [24]); moreover such embedding can be chosen closed (see [23]) and this is used in the proof of Lemma 1. Hence, \({H}^{1}(I,{\mathcal{M}}_{0})\) is a closed submanifold of the Hilbert space \({H}^{1}(I, {\mathbb{R}}^{N})\). In this case, we denote by \(d(\cdot,\cdot )\) the distance induced on \({\mathcal{M}}_{0}\) by its Riemannian metric \(\langle \cdot,{\cdot \rangle }_{R}\), i.e.,

$$d({x}_{p},{x}_{q})\ :=\ \inf \left \{{\int\limits}_{a}^{b}\sqrt{\langle \dot{x},\dot{ {x}\rangle }_{ R}}\;\mathrm{d}s :\; x \in {A}_{{x}_{p},{x}_{q}}\right \},$$
where \(x \in {A}_{{x}_{p},{x}_{q}}\) if \(x : [a,b] \rightarrow {\mathcal{M}}_{0}\) is any piecewise smooth curve in \({\mathcal{M}}_{0}\) joining \({x}_{p},{x}_{q} \in {\mathcal{M}}_{0}\).

Taking z p , \({z}_{q} \in \mathcal{M}\), let us consider

$${\it \Omega }^{1}({z}_{ p},{z}_{q}) =\{ z \in {H}^{1}(I,\mathcal{M}) : z(0) = {z}_{ p},\;z(1) = {z}_{q}\},$$
which is a submanifold of \({H}^{1}(I,\mathcal{M})\), complete if \(\mathcal{M}\) is complete and having tangent space described as
$${T}_{z}{\it \Omega }^{1}({z}_{ p},{z}_{q}) =\{ \zeta \in {T}_{z}{H}^{1}(I,\mathcal{M}) : \zeta (0) = 0 = \zeta (1)\}\quad \text{ at any}z \in {\it \Omega }^{1}({z}_{ p},{z}_{q}).$$
Moreover, for any l p , \({l}_{q} \in \mathbb{R}\), let us denote
$$W({l}_{p},{l}_{q}) =\{ l \in {H}^{1}(I, \mathbb{R}) : l(0) = {l}_{ p}\,\;l(1) = {l}_{q}\}.$$
Clearly,
$$W({l}_{p},{l}_{q}) = {H}_{0}^{1}(I, \mathbb{R}) + {l}_{ pq},$$
with \({H}_{0}^{1}(I, \mathbb{R}) =\{ l \in {H}^{1}(I, \mathbb{R}) : l(0) = 0 = l(1)\}\), \({l}_{pq} : s \in I\mapsto (1 - s){l}_{p} + s{l}_{q} \in \mathbb{R}\). Hence, \(W({l}_{p},{l}_{q})\) is a closed affine submanifold of the Hilbert space \({H}^{1}(I, \mathbb{R})\) with tangent space
$${T}_{l}W({l}_{p},{l}_{q}) = {H}_{0}^{1}(I, \mathbb{R})\quad \text{ for every}l \in \, W({l}_{ p},{l}_{q}).$$

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Bartolo, R., Candela, A.M., Flores, J.L. (2012). Global Geodesic Properties of Gödel-type SpaceTimes. In: Sánchez, M., Ortega, M., Romero, A. (eds) Recent Trends in Lorentzian Geometry. Springer Proceedings in Mathematics & Statistics, vol 26. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4897-6_7

Download citation

Publish with us

Policies and ethics