Skip to main content

Memory Effects in RNA Folding Dynamics Revealed by Single-Molecule Fluorescence

  • Chapter
  • First Online:
Biophysics of RNA Folding

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 3))

Abstract

RNA molecules are biopolymers that play numerous essential roles in all basic cellular processes. To perform their functions, they must fold into the correct three-dimensional structures. RNA folding potential energy surfaces are rugged and full of kinetic traps, which can prevent the formation of the native structure and result in persistent differences in behavior between molecules, termed folding memory effects. In this review, we revisit the discovery of persistent memory effects in folding of RNA molecules. The study of memory effects is closely linked to the development and application of single-molecule fluorescence methods, which were instrumental in the dissection of RNAs into discrete subpopulations with different dynamic properties. We explore possible hypotheses that account for memory effects such as secondary structure differences, surface immobilization effects, and metal ions. The ability to interconvert subpopulations confirms that memory effects are an intrinsic property of RNA folding and enables their thermodynamic and kinetic characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleman EA, Lamichhane R, Rueda D (2008) Exploring RNA folding one molecule at a time. Curr Opin Chem Biol 12:647–654

    Article  PubMed  CAS  Google Scholar 

  • Bartley LE, Zhuang X, Das R, Chu S, Herschlag D (2003) Exploration of the transition state for tertiary structure formation between an RNA helix and a large structured RNA. J Mol Biol 328:1011–1026

    Article  PubMed  CAS  Google Scholar 

  • Benne R, Sloof P (1987) Evolution of the mitochondrial protein synthetic machinery. Biosystems 21:51–68

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield VA, Crothers DM, Tinoco I Jr (2000) Nucleic acids: structures, properties, and functions, 1st edn. University Science Press, New York

    Google Scholar 

  • Bokinsky G, Rueda D, Misra VK, Rhodes MM, Gordus A, Babcock HP, Walter NG, Zhuang X (2003) Single-molecule transition-state analysis of RNA folding. Proc Natl Acad Sci USA 100:9302–9307

    Article  PubMed  CAS  Google Scholar 

  • Butcher SE, Allain FH, Feigon J (1999) Solution structure of the loop B domain from the hairpin ribozyme. Nat Struct Biol 6:212–216

    Article  PubMed  CAS  Google Scholar 

  • Cai Z, Tinoco I Jr (1996) Solution structure of loop A from the hairpin ribozyme from tobacco ringspot virus satellite. Biochemistry 35:6026–6036

    Article  PubMed  CAS  Google Scholar 

  • Cheadle C, Fan J, Cho-Chung YS, Werner T, Ray J, Do L, Gorospe M, Becker KG (2005) Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability. BMC Genomics 6:75

    Article  PubMed  Google Scholar 

  • Chu S (2003) Biology and polymer physics at the single-molecule level. Philos Transact A Math Phys Eng Sci 361:689–698

    Article  PubMed  CAS  Google Scholar 

  • Dill KA, Chan HS (1997) From Levinthal to pathways to funnels. Nat Struct Biol 4:10–19

    Article  PubMed  CAS  Google Scholar 

  • Ditzler MA, Rueda D, Mo J, Hakansson K, Walter NG (2008) A rugged free energy landscape ­separates multiple functional RNA folds throughout denaturation. Nucleic Acids Res 36:7088–7099

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  • Fersht AR, Itzhaki LS, elMasry NF, Matthews JM, Otzen DE (1994) Single versus parallel pathways of protein folding and fractional formation of structure in the transition state. Proc Natl Acad Sci USA 91:10426–10429

    Article  PubMed  CAS  Google Scholar 

  • Gesterland RF, Atkins JF (1999) The RNA World. Cold Spring Harbor Press, New York

    Google Scholar 

  • Greenfeld M, Solomatin SV, Herschlag D (2011) Removal of covalent heterogeneity reveals ­simple folding behavior for P4-P6 RNA. J Biol Chem 286:19872–19879

    Article  PubMed  CAS  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  PubMed  CAS  Google Scholar 

  • Guo S, Tschammer N, Mohammed S, Guo P (2005) Specific delivery of therapeutic RNAs to ­cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum Gene Ther 16:1097–1109

    Article  PubMed  CAS  Google Scholar 

  • Ha T (2001) Single-molecule fluorescence resonance energy transfer. Methods 25:78–86

    Article  PubMed  CAS  Google Scholar 

  • Ha T, Rasnik I, Cheng W, Babcock HP, Gauss GH, Lohman TM, Chu S (2002) Initiation and ­re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419:638–641

    Article  PubMed  CAS  Google Scholar 

  • Herschlag D, Khosla M, Tsuchihashi Z, Karpel RL (1994) An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis. EMBO J 13:2913–2924

    PubMed  CAS  Google Scholar 

  • Herschlag D (1995) RNA chaperones and the RNA folding problem. J Biol Chem 270:20871–20874

    PubMed  CAS  Google Scholar 

  • Johnson JM, Ha T, Chu S, Boxer SG (2002) Early steps of supported bilayer formation probed by single vesicle fluorescence assays. Biophys J 83:3371–3379

    Article  PubMed  CAS  Google Scholar 

  • Karunatilaka KS, Rueda D (2009) Single-Molecule Fluorescence Studies of RNA: A Decade’s Progress. Chem Phys Lett 476:1–10

    Article  PubMed  CAS  Google Scholar 

  • Korennykh AV, Plantinga MJ, Correll CC, Piccirilli JA (2007) Linkage between substrate recognition and catalysis during cleavage of sarcin/ricin loop RNA by restrictocin. Biochemistry 46:12744–12756

    Article  PubMed  CAS  Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS (2004) The hidden genetic program of complex organisms. Sci Am 291:60–67

    Article  PubMed  Google Scholar 

  • Mikulecky PJ, Kaw MK, Brescia CC, Takach JC, Sledjeski DD, Feig AL (2004) Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat Struct Mol Biol 11:1206–1214

    Article  PubMed  CAS  Google Scholar 

  • Nahas MK, Wilson TJ, Hohng S, Jarvie K, Lilley DM, Ha T (2004) Observation of internal ­cleavage and ligation reactions of a ribozyme. Nat Struct Mol Biol 11:1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Okumus B, Wilson TJ, Lilley DM, Ha T (2004) Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. Biophys J 87:2798–2806

    Article  PubMed  CAS  Google Scholar 

  • Otzen DE, Itzhaki LS, ElMasry NF, Jackson SE, Fersht AR (1994) Structure of the transition state for the folding/unfolding of the barley chymotrypsin inhibitor 2 and its implications for mechanisms of protein folding. Proc Natl Acad Sci USA 91:10422–10425

    Article  PubMed  CAS  Google Scholar 

  • Pinard R, Hampel KJ, Heckman JE, Lambert D, Chan PA, Major F, Burke JM (2001) Functional involvement of G8 in the hairpin ribozyme cleavage mechanism. EMBO J 20:6434–6442

    Article  PubMed  CAS  Google Scholar 

  • Pyle AM (2002) Metal ions in the structure and function of RNA. J Biol Inorg Chem 7:679–690

    Article  PubMed  CAS  Google Scholar 

  • Pyle AM (2008) Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Biophys 37:317–336

    Article  PubMed  CAS  Google Scholar 

  • Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516

    Article  PubMed  CAS  Google Scholar 

  • Rueda D, Bokinsky G, Rhodes MM, Rust MJ, Zhuang X, Walter NG (2004) Single-molecule enzymology of RNA: essential functional groups impact catalysis from a distance. Proc Natl Acad Sci USA 101:10066–10071

    Article  PubMed  CAS  Google Scholar 

  • Rueda D, Walter NG (2006) Fluorescent energy transfer readout of an aptazyme-based biosensor. Methods Mol Biol 335:289–310

    PubMed  CAS  Google Scholar 

  • Rupert PB, Ferre-D’Amare AR (2001) Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410:780–786

    Article  PubMed  CAS  Google Scholar 

  • Russell R, Zhuang X, Babcock HP, Millett IS, Doniach S, Chu S, Herschlag D (2002) Exploring the folding landscape of a structured RNA. Proc Natl Acad Sci USA 99:155–160

    Article  PubMed  CAS  Google Scholar 

  • Salim N, Lamichhane R, Zhao R, Banerjee T, Philip J, Rueda D, Feig AL (2012) Thermodynamic and Kinetic Analysis of an RNA Kissing Interaction and Its Resolution into an Extended Duplex. Biophys J 102:1097–1107

    Article  PubMed  CAS  Google Scholar 

  • Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science 310:827–834

    Article  PubMed  CAS  Google Scholar 

  • Siomi MC, Sato K, Pezic D, Aravin AA (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12:246–258

    Article  PubMed  CAS  Google Scholar 

  • Solomatin SV, Greenfeld M, Chu S, Herschlag D (2010) Multiple native states reveal persistent ruggedness of an RNA folding landscape. Nature 463:681–684

    Article  PubMed  CAS  Google Scholar 

  • Tan E, Wilson TJ, Nahas MK, Clegg RM, Lilley DM, Ha T (2003) A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proc Natl Acad Sci USA 100:9308–9313

    Article  PubMed  CAS  Google Scholar 

  • Tinoco I, Onoa B (2006) The RNA World 3rd Ed. Chapter 25,. Cold Spring Harbor Press, New York pp 721–745

    Google Scholar 

  • Treiber DK, Williamson JR (2001) Beyond kinetic traps in RNA folding. Curr Opin Struct Biol 11:309–314

    Article  PubMed  CAS  Google Scholar 

  • Valadkhan S, Manley JL (2001) Splicing-related catalysis by protein-free snRNAs. Nature 413:701–707

    Article  PubMed  CAS  Google Scholar 

  • Walter NG, Burke JM (1998) The hairpin ribozyme: structure, assembly and catalysis. Curr Opin Chem Biol 2:303

    Article  PubMed  CAS  Google Scholar 

  • Walter NG, Hampel KJ, Brown KM, Burke JM (1998) Tertiary structure formation in the hairpin ribozyme monitored by fluorescence resonance energy transfer. EMBO J 17:2378–2391

    Article  PubMed  CAS  Google Scholar 

  • Winkler WC, Nahvi A, Sudarsan N, Barrick JE, Breaker RR (2003) An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol 10:701–707

    Article  PubMed  CAS  Google Scholar 

  • Wood S, Ferre-D’Amare AR, Rueda D (2012) Allosteric Tertiary Interactions Preorganize the c-di-GMP Riboswitch and Accelerate Ligand Binding. ACS Chem Biol 7(5):920–7

    Article  PubMed  CAS  Google Scholar 

  • Woodson SA (2005) Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr Opin Chem Biol 9:104–109

    Article  PubMed  CAS  Google Scholar 

  • Woodson SA (2010) Compact intermediates in RNA folding. Annu Rev Biophys 39:61–77

    Article  PubMed  CAS  Google Scholar 

  • Zhuang X, Bartley LE, Babcock HP, Russell R, Ha T, Herschlag D, Chu S (2000) A single-­molecule study of RNA catalysis and folding. Science 288:2048–2051

    Article  PubMed  CAS  Google Scholar 

  • Zhuang X, Kim H, Pereira MJ, Babcock HP, Walter NG, Chu S (2002) Correlating structural dynamics and function in single ribozyme molecules. Science 296:1473–1476

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Marshall M, Aleman EA, Lamichhane R, Feig A, Rueda D (2010) Laser-assisted single-molecule refolding (LASR). Biophys J 99:1925–1931

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Rueda D (2009) RNA folding dynamics by single-molecule fluorescence resonance energy transfer. Methods 49:112–117

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Rueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhao, R., Rueda, D. (2013). Memory Effects in RNA Folding Dynamics Revealed by Single-Molecule Fluorescence. In: Russell, R. (eds) Biophysics of RNA Folding. Biophysics for the Life Sciences, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4954-6_7

Download citation

Publish with us

Policies and ethics