Skip to main content

Flow of Stresses: Constructal Design of Perforated Plates Subjected to Tension or Buckling

  • Chapter
  • First Online:
Constructal Law and the Unifying Principle of Design

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

It is possible to state that improving systems configuration for achieving better performance is the major goal in engineering. In the past, the scientific and technical knowledge combined with practice and intuition has guided engineers in the design of man-made systems for specific purposes. Soon after, the advent of the computational tools has permitted to simulate and evaluate flow architectures with many degrees of freedom. However, while system performance was analyzed and evaluated on a scientific basis, system design was kept at the level of art [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bejan A, Lorente S. The constructal law (La loi constructale). Int J Heat Mass Tran. 2006;49:445–5.

    Article  Google Scholar 

  2. Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. Int J Heat Mass Tran. 1997;40:799–816.

    Article  MATH  Google Scholar 

  3. Bejan A. Shape and structure, from engineering to nature. Cambridge: Cambridge University Press; 2000.

    MATH  Google Scholar 

  4. Bejan A, Lorente S. Design with constructal theory. Hoboken: Wiley; 2008.

    Book  Google Scholar 

  5. Ghodoossi L. Conceptual study on constructal theory. Energy conversion and management. 2004;45:1379–95.

    Article  Google Scholar 

  6. Bejan A, Lorente S. Constructal theory of generation of configuration in nature and engineering. J Appl Phys. 2006;100:041301.

    Article  Google Scholar 

  7. Azad AV, Amidpour M. Economic optimization of shell and tube heat exchanger based on constructal theory. Energy. 2011;36:1087–96.

    Article  Google Scholar 

  8. Beyene A, Peffley J. Constructal theory, adaptive motion, and their theoretical application to low-speed turbine design. J Energ Eng-ASCE. 2009;135:112–8.

    Article  Google Scholar 

  9. Kang D-H, Lorente S, Bejan A. Constructal dendritic configuration for the radiation heating of a solid stream. J Appl Phys. 2010;107:114910.

    Article  Google Scholar 

  10. Kim Y, Lorente S, Bejan A. Constructal multi-tube configuration for natural and forced convection in cross-flow. Int J Heat Mass Tran. 2010;53:5121–8.

    Article  MATH  Google Scholar 

  11. Kim Y, Lorente S, Bejan A. Steam generator structure: continuous model and constructal design. Int J Energ Res. 2011;35:336–45.

    Article  Google Scholar 

  12. Biserni C, Rocha LAO, Bejan A. Inverted fins: geometric optimization of the intrusion into a conducting wall. Int J Heat Mass Tran. 2004;47:2577–86.

    Article  MATH  Google Scholar 

  13. Rocha LAO, Montanari GC, dos Santos ED, Rocha AS. Constructal design applied to the study of cavities into a solid conducting wall. Therm Eng. 2007;6:41–7.

    Google Scholar 

  14. Biserni C, Rocha LAO, Stanescu G, Lorenzini E. Constructal H-shaped cavities according to Bejan’s theory. Int J Heat Mass Tran. 2007;50:2132–8.

    Article  MATH  Google Scholar 

  15. Lorenzini G, Rocha LAO. Geometric optimization of T-Y-shaped cavity according to constructal design. Int J Heat Mass Tran. 2009;52:4683–8.

    Article  MATH  Google Scholar 

  16. Bejan A, Almogbel M. Constructal T-shaped fins. Int J Heat Mass Tran. 2000;43:2101–15.

    Article  MATH  Google Scholar 

  17. Lorenzini G, Rocha LAO. Constructal design of Y-shaped assembly of fins. J Heat Mass Tran. 2006;49:4552–7.

    Article  MATH  Google Scholar 

  18. Xie ZH, Chen LG, Sun FR. Constructal optimization of twice Y-shaped assemblies of fins by taking maximum thermal resistance minimization as objective. Sci China Technol Sci. 2010;53:2756–64.

    Article  Google Scholar 

  19. Lorenzini G, Rocha LAO. Constructal design of T-Y assembly of fins for an optimized heat removal. Int J Heat Mass Tran. 2009;52:1458–63.

    Article  MATH  Google Scholar 

  20. Lorenzini G, Correa RL, dos Santos ED, Rocha LAO. Constructal design of complex assembly of fins. J Heat Tran-T ASME. 2011;133:1-1–7.

    Google Scholar 

  21. Bejan A, Lorente S. The constructal law and the thermodynamics of flow systems with configuration. Int J Heat Mass Tran. 2004;47:3203–14.

    Article  MATH  Google Scholar 

  22. Bejan A. Advanced engineering thermodynamics. Hoboken: Wiley; 2006.

    Google Scholar 

  23. Reis AH. Constructal view of scaling laws of river basins. Geomorphology. 2006;78:201–6.

    Article  Google Scholar 

  24. Cetkin E, Lorente S, Bejan A. Natural constructal emergence of vascular design with turbulent flow. J Appl Phys. 2010;107:114901-1–9.

    Article  Google Scholar 

  25. Bello-Ochende T, Meyer JP, Ogunronbi OI. Constructal multiscale cylinders rotating in cross-flow. Int J Heat Mass Tran. 2011;54:2568–77.

    Article  MATH  Google Scholar 

  26. Rocha LAO, Lorente S, Bejan A. Tree-shaped vascular wall designs for localized intense cooling. Int J Heat Mass Tran. 2009;52:4535–44.

    Article  MATH  Google Scholar 

  27. Lorente S, Bejan A. Combined ‘flow and strength’ geometric optimization: internal structure in a vertical insulating wall with air cavities and prescribed strength. Int J Heat Mass Tran. 2002;45:3313–20.

    Article  MATH  Google Scholar 

  28. Lorente S, Lee J, Bejan A. The “flow of stresses” concept: the analogy between mechanical strength and heat convection. Int J Heat Mass Tran. 2010;53:2963–8.

    Article  MATH  Google Scholar 

  29. Cheng B, Zhao J. Strengthening of perforated plates under uniaxial compression: Buckling analysis. Thin Wall Struct. 2010;48:905–14.

    Article  Google Scholar 

  30. Young WC, Budynas RG. Roark’s formulas for stress and strain. New York: McGraw-Hill; 2002.

    Google Scholar 

  31. Beer FP, Johnston Jr ER, Dewolf JT, Mazurek D. Mechanics of materials. 5th ed. New York: McGraw-Hill; 2009.

    Google Scholar 

  32. She C, Guo W. Three-dimensional stress concentrations at elliptic holes in elastic isotropic plates subjected to tensile stress. Int J Fatigue. 2007;29:330–5.

    Article  MATH  Google Scholar 

  33. Rezaeepazhand J, Jafari M. Stress analysis of perforated composite plates. Compos Struct. 2005;71:463–8.

    Article  Google Scholar 

  34. Rencis JJ, Terdalkar S. Stress concentrations and static failure for common elements used in finite element stress analysis. Proceedings of the 2007 Midwest Section Conference of the American Society for Engineering Education; 2007. p. 1–17

    Google Scholar 

  35. Åkesson B. Plate buckling in bridges and other structures. New York: Taylor and Francis; 2007.

    Google Scholar 

  36. Silva VD. Mechanics and strength of materials. Berlin: Springer; 2006.

    Google Scholar 

  37. El-Sawy KM, Nazmy AS. Effect of aspect ratio on the elastic buckling of uniaxially loaded plates with eccentric holes. Thin Wall Struct. 2001;39:983–98.

    Article  Google Scholar 

  38. El-Sawy KM, Martini MI. Elastic stability of bi-axially loaded rectangular plates with a single circular hole. Thin Wall Struct. 2007;45:122–33.

    Article  Google Scholar 

  39. Moen CD, Schafer BW. Elastic buckling of thin plates with holes in compression or bending. Thin Wall Struct. 2009;47:1597–607.

    Article  Google Scholar 

  40. El-Sawy KM, Nazmy AS, Martini MI. Elasto-plastic buckling of perforated plates under uniaxial compression. Thin Wall Struct. 2004;42:1083–101.

    Article  Google Scholar 

  41. Paik JK. Ultimate strength of perforated steel plates under edge shear loading. Thin Wall Struct. 2007;45:301–6.

    Article  Google Scholar 

  42. Paik JK. Ultimate strength of perforated steel plates under axial compressive loading along short edges. Ships and Offshore Structures,2007;2:355–60

    Google Scholar 

  43. Paik JK. Ultimate strength of perforated steel plates under combined biaxial compression and edge shear loads. Thin Wall Struct. 2008;46:207–13.

    Article  Google Scholar 

  44. Maiorana E, Pellegrino C, Modena C. Linear buckling analysis of perforated plates subjected to localized symmetrical load. Eng Struct. 2008;30:3151–8.

    Article  Google Scholar 

  45. Maiorana E, Pellegrino C, Modena C. Non-linear analysis of perforated steel plates subjected to localized symmetrical load. J Constr Steel Res. 2009;65:959–64.

    Article  Google Scholar 

  46. Real M de V, Isoldi LA. Finite element buckling analysis of uniaxially loaded plates with holes. Proceedings of Southern Conference on Computational Modeling, Furg; 2010; Rio Grande

    Google Scholar 

  47. ANSYS, User’s manual (version 10.0). Swanson analysis system Inc, Houston; 2005

    Google Scholar 

  48. Madenci E, Guven I. The finite element method and applications in engineering using ANSYS ®. Ed., Springer; 2006

    Google Scholar 

  49. Przemieniecki JS. Theory of matrix structural analysis. Ed. Dover Publications; 1985

    Google Scholar 

  50. Wang CM, Wang CY, Reddy JN. Exact solutions for buckling of structural members. Florida: CRC; 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. O. Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Isoldi, L.A., Real, M.V., Correia, A.L.G., Vaz, J., Santos, E.D.d., Rocha, L.A.O. (2013). Flow of Stresses: Constructal Design of Perforated Plates Subjected to Tension or Buckling. In: Rocha, L., Lorente, S., Bejan, A. (eds) Constructal Law and the Unifying Principle of Design. Understanding Complex Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5049-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5049-8_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5048-1

  • Online ISBN: 978-1-4614-5049-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics