Skip to main content

Computational Prediction of Protein Subcellular Localization, Genomic Islands, and Virulence to Aid Antigen Discovery

  • Chapter
  • First Online:
Immunomic Discovery of Adjuvants and Candidate Subunit Vaccines

Part of the book series: Immunomics Reviews: ((IMMUN,volume 5))

  • 1383 Accesses

Abstract

Subunits of bacterial proteins involved in virulence, as well as bacterial cell surface and secreted proteins, may be prioritized as potential vaccine components warranting further study. Computational prediction of surface-exposed and extracellular bacterial proteins (that are more accessible to the host immune system) now exceeds the accuracy of most high-throughput “wet lab” methods and has improved markedly in recent years. Identification of proteins encoded within genomic islands is also now much more accurate than a decade ago and can provide insight on gene stability plus aid virulence gene identification. Identifying proteins/genes that are most likely involved in virulence is also desirable, but further improvements in bioinformatics tools for such predictions are needed. This chapter highlights such computational tools currently available to aid the discovery of new vaccine components, how they have improved in recent years, and summarize what is needed in the future to further accelerate vaccine discovery efforts. At minimum, researchers should consider that these recently improved computational methods can now predict more potential vaccine components, and so some bacterial genomes could benefit from reanalysis with these more accurate methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, Comanducci M, Jennings GT, Baldi L, Bartolini E, Capecchi B (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287(5459):1816

    Article  PubMed  CAS  Google Scholar 

  2. Masignani V, Comanducci M, Giuliani MM, Bambini S, Adu-Bobie J, Aricò B, Brunelli B, Pieri A, Santini L, Savino S (2003) Vaccination against Neisseria meningitidis using three variants of the lipoprotein GNA1870. J Exp Med 197(6):789

    Article  PubMed  CAS  Google Scholar 

  3. Welsch JA, Rossi R, Comanducci M, Granoff DM (2004) Protective activity of monoclonal antibodies to genome-derived neisserial antigen 1870, a Neisseria meningitidis candidate vaccine. J Immunol 172(9):5606

    PubMed  CAS  Google Scholar 

  4. Scarselli M, Aricò B, Brunelli B, Savino S, Di Marcello F, Palumbo E, Veggi D, Ciucchi L, Cartocci E, Bottomley MJ (2011) Rational Design of a Meningococcal Antigen Inducing Broad Protective Immunity. Sci Transl Med 3(91):91ra62

    Article  PubMed  CAS  Google Scholar 

  5. Chakravarti DN, Fiske MJ, Fletcher LD, Zagursky RJ (2000) Application of genomics and proteomics for identification of bacterial gene products as potential vaccine candidates. Vaccine 19(6):601–612

    Article  PubMed  CAS  Google Scholar 

  6. Wizemann TM, Heinrichs JH, Adamou JE, Erwin AL, Kunsch C, Choi GH, Barash SC, Rosen CA, Masure HR, Tuomanen E (2001) Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect Immun 69(3):1593

    Article  PubMed  CAS  Google Scholar 

  7. Ross BC, Czajkowski L, Hocking D, Margetts M, Webb E, Rothel L, Patterson M, Agius C, Camuglia S, Reynolds E (2001) Identification of vaccine candidate antigens from a genomic analysis of Porphyromonas gingivalis. Vaccine 19(30):4135–4142

    Article  PubMed  CAS  Google Scholar 

  8. Ariel N, Zvi A, Makarova K, Chitlaru T, Elhanany E, Velan B, Cohen S, Friedlander A, Shafferman A (2003) Genome-based bioinformatic selection of chromosomal Bacillus anthracis putative vaccine candidates coupled with proteomic identification of surface-associated antigens. Infect Immun 71(8):4563

    Article  PubMed  CAS  Google Scholar 

  9. Gamberini M, Gómez RM, Atzingen MV, Martins EAL, Vasconcellos SA, Romero EC, Leite LCC, Ho PL, Nascimento ALTO (2005) Whole‐genome analysis of Leptospira interrogans to identify potential vaccine candidates against leptospirosis. FEMS Microbiol Lett 244(2):305–313

    Article  PubMed  CAS  Google Scholar 

  10. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54(1):641–679

    Article  PubMed  CAS  Google Scholar 

  11. Stephens C, Murray W (2001) Pathogen evolution: how good bacteria go bad. Curr Biol 11(2):R53–R56

    Article  PubMed  CAS  Google Scholar 

  12. Ho Sui SJ, Fedynak A, Hsiao WWL, Langille MGI, Brinkman FSL (2009) The association of virulence factors with genomic islands. PLoS One 4(12):e8094

    Article  PubMed  Google Scholar 

  13. Siebor E and Neuwirth C (2011) The new variant of Salmonella genomic island 1 (SGI1-V) from a Proteus mirabilis French clinical isolate harbours blaVEB-6 and qnrA1 in the multiple antibiotic resistance region. J Antimicrob Chemother

    Google Scholar 

  14. Boyd EF, Almagro-Moreno S, Parent MA (2009) Genomic islands are dynamic, ancient integrative elements in bacterial evolution. Trends Microbiol 17(2):47–53

    Article  PubMed  CAS  Google Scholar 

  15. Gal‐Mor O, Finlay BB (2006) Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol 8(11):1707–1719

    Article  PubMed  Google Scholar 

  16. Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2(5):414–424

    Article  PubMed  CAS  Google Scholar 

  17. Hacker J, Blum‐Oehler G, Mühldorfer I, Tschäpe H (1997) Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23(6):1089–1097

    Article  PubMed  CAS  Google Scholar 

  18. Relman DA (2011) Microbial genomics and infectious diseases. N Engl J Med 2011(365):347–357

    Google Scholar 

  19. Rey S, Gardy J, Brinkman F (2005) Assessing the precision of high-throughput computational and laboratory approaches for the genome-wide identification of protein subcellular localization in bacteria. BMC Genomics 6(1):162

    Article  PubMed  Google Scholar 

  20. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26(13):1608

    Article  PubMed  CAS  Google Scholar 

  21. Lu Z, Szafron D, Greiner R, Lu P, Wishart D, Poulin B, Anvik J, Macdonell C, Eisner R (2004) Predicting subcellular localization of proteins using machine-learned classifiers. Bioinformatics 20(4):547

    Article  PubMed  CAS  Google Scholar 

  22. Gardy JL, Brinkman FSL (2006) Methods for predicting bacterial protein subcellular localization. Nat Rev Microbiol 4:741–751

    Article  PubMed  CAS  Google Scholar 

  23. Yu NY, Laird MR, Spencer C, Brinkman FSL (2011) PSORTdb—an expanded, auto-updated, user-friendly protein subcellular localization database for Bacteria and Archaea. Nucleic Acids Res 39(suppl 1):D241

    Article  PubMed  Google Scholar 

  24. Arnold R, Brandmaier S, Kleine F, Tischler P, Heinz E, Behrens S, Niinikoski A, Mewes HW, Horn M, Rattei T (2009) Sequence-based prediction of type III secreted proteins. PLoS Pathog 5(4):e1000376

    Article  PubMed  Google Scholar 

  25. Samudrala R, Heffron F, McDermott JE (2009) Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. PLoS Pathog 5(4):e1000375

    Article  PubMed  Google Scholar 

  26. Langille MGI, Hsiao WWL, Brinkman FSL (2010) Detecting genomic islands using bioinformatics approaches. Nat Rev Microbiol 8(5):373–382

    Article  PubMed  CAS  Google Scholar 

  27. Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke W, Surovcik K, Meinicke P, Merkl R (2006) Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 7(1):142

    Article  PubMed  Google Scholar 

  28. Hsiao WWL, Ung K, Aeschliman D, Bryan J, Finlay BB, Brinkman FSL (2005) Evidence of a large novel gene pool associated with prokaryotic genomic islands. PLoS Genet 1(5):e62

    Article  PubMed  Google Scholar 

  29. Rajan I, Aravamuthan S, Mande SS (2007) Identification of compositionally distinct regions in genomes using the centroid method. Bioinformatics 23(20):2672

    Article  PubMed  CAS  Google Scholar 

  30. Vernikos GS, Parkhill J (2006) Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22(18):2196

    Article  PubMed  CAS  Google Scholar 

  31. Wang H, Fazekas J, Booth M, Liu Q, Che D (2011) An integrative approach for genomic island prediction in prokaryotic genomes. Bioinformatics Research and Applications 6674:404–415

    Article  Google Scholar 

  32. Xu Z, Hao B (2009) CVTree update: a newly designed phylogenetic study platform using composition vectors and whole genomes. Nucleic Acids Res 37(suppl 2):W174

    Article  PubMed  CAS  Google Scholar 

  33. Qi J, Luo H, Hao B (2004) CVTree: a phylogenetic tree reconstruction tool based on whole genomes. Nucleic Acids Res 32(suppl 2):W45

    Article  PubMed  CAS  Google Scholar 

  34. Langille M, Hsiao W, Brinkman F (2008) Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics 9(1):329

    Article  PubMed  Google Scholar 

  35. Ou HY, He X, Harrison EM, Kulasekara BR, Thani AB, Kadioglu A, Lory S, Hinton JCD, Barer MR, Deng Z (2007) MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands. Nucleic Acids Res 35(suppl 2):W97

    Article  PubMed  Google Scholar 

  36. Langille MGI, Brinkman FSL (2009) IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 25(5):664

    Article  PubMed  CAS  Google Scholar 

  37. Winstanley C, Langille MG, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C, Sanschagrin F, Thomson NR, Winsor GL, Quail MA, Lennard N, Bignell A, Clarke L, Seeger K, Saunders D, Harris D, Parkhill J, Hancock RE, Brinkman FS, Levesque RC (2009) Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Res 19(1):12–23

    Article  PubMed  CAS  Google Scholar 

  38. Ragot C, Garnotel E, Vedy S, Morillon M (2006) Dukoral, oral cholera vaccine. Med Trop (Mars) 66(3):237–239

    CAS  Google Scholar 

  39. Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272(5270):1910

    Article  PubMed  CAS  Google Scholar 

  40. Chen LH, Xiong ZH, Sun LL, Yang J, Jin Q (2012) VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 40:D641–D645

    Article  PubMed  CAS  Google Scholar 

  41. Yang J, Chen L, Sun L, Yu J, Jin Q (2008) VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics. Nucleic Acids Res 36(suppl 1):D539

    PubMed  CAS  Google Scholar 

  42. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q (2005) VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33(suppl 1):D325

    PubMed  CAS  Google Scholar 

  43. Merkl R (2004) SIGI: score-based identification of genomic islands. BMC Bioinformatics 5(1):22

    Article  PubMed  Google Scholar 

  44. Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, Brinkman FS (2005) PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21(5):617

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona S. L. Brinkman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dhillon, B.K., Yu, N.Y., Brinkman, F.S.L. (2013). Computational Prediction of Protein Subcellular Localization, Genomic Islands, and Virulence to Aid Antigen Discovery. In: Flower, D., Perrie, Y. (eds) Immunomic Discovery of Adjuvants and Candidate Subunit Vaccines. Immunomics Reviews:, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5070-2_6

Download citation

Publish with us

Policies and ethics