Skip to main content

Mathematics Teachers’ Domain-Specific Professional Knowledge: Conceptualization and Test Construction in COACTIV

  • Chapter
  • First Online:
Cognitive Activation in the Mathematics Classroom and Professional Competence of Teachers

Abstract

This chapter introduces the tests of secondary mathematics teachers’ pedagogical content knowledge and content knowledge that were developed and administered in the COACTIV framework. It reports on the conceptualization of the two knowledge constructs based on Shulman’s (Harv Educ Rev 57(1):1–22, 1987) theoretical taxonomy of teacher knowledge, describes the construction of tests to assess the two constructs, and presents results from N=198 secondary mathematics teachers in different school tracks. Specifically, the chapter presents findings on the dimensionality of teachers’ domain-specific professional knowledge, the scaling of the tests, evidence for their reliability, and first results on construct validity. This chapter serves as the basis for Chap. 9, which examines the validity of pedagogical content knowledge and content knowledge to predict quality of instruction and student progress.

This chapter is based on Krauss etal. (2008a, b, and c).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In some COACTIV publications, slightly different numbers of PCK items are reported. The reason for the discrepancy is that the number of items in the explanations and representations subtest was later modified in response to the findings of in-depth content and psychometric analysis. However, these differences did not lead to any substantial changes in the results presented.

  2. 2.

    The Michigan research group subsumes CK and PCK to the category of mathematical knowledge for teaching (MKT) and distinguishes this knowledge from pedagogical knowledge. For example, Bass and Ball (2004) have compiled a catalog of “core tasks and problems of teaching” that includes, for example, “analyzing and evaluating student responses” but also “evaluating a textbook’s approach to a topic” and then state: “And it is knowledge of mathematics, not knowledge of pedagogy or of cognitive psychology.”

  3. 3.

    For example, it would have been possible to distinguish between content categories (e.g., algebra, geometry) or between procedural and declarative knowledge. An exploratory factor analysis of the COACTIV items did not identify any specific and interpretable subdimensions of CK (Krauss et al. 2008b). Given the relatively low number of items implemented, however, definitive conclusions cannot yet be drawn (see, e.g., Blömeke et al. 2008, 2010).

  4. 4.

    Given the small numbers of teachers in multi-track schools (N = 22) and comprehensive schools (N = 21; including three who were licensed to teach in the academic track) in the sample, no general conclusions can be drawn for these subpopulations. However, it can be noted that whereas teachers in all nonacademic tracks showed similar performance levels on the CK test, teachers in intermediate-track schools (N = 70) tended to outperform the other two groups on the PCK test.

References

  • Ball DL, Lubienski ST, Mewborn DS (2001) Research on teaching mathematics: the unsolved problem of teachers’ mathematical knowledge. In: Richardson V (ed) Handbook of research on teaching, 4th edn. Macmillan, New York, pp 433–456

    Google Scholar 

  • Ball DL, Hill HC, Bass H (2005) Knowing mathematics for teaching. Am Educ 29(1):14–17, 20–22, 43–46

    Google Scholar 

  • Ball DL, Charalambous C, Thames M, Lewis J (2009) Teacher knowledge and teaching: viewing a complex relationship from three perspectives. In: Tzekaki M, Kaldrimidou M, Sakonidis H (eds) Proceedings of the 33rd conference of the international group for the Psychology of Mathematics Education (PME), vol 1. PME, Thessaloniki, pp 121–125

    Google Scholar 

  • Baron-Boldt J, Schuler H, Funke U (1988) Prädiktive Validität von Schulabschlußnoten: Eine Meta-Analyse [Predictive validity of school grades: a meta-analysis]. Zeitschrift für Pädagogische Psychologie 2:79–90

    Google Scholar 

  • Bass H, Ball DL (2004) A practice-based theory of mathematical knowledge for teaching: the case of mathematical reasoning. In: Wang J, Xu B (eds) Trends and challenges in mathematics education. East China Normal University Press, Shanghai, pp 295–313

    Google Scholar 

  • Baumert J, Köller O (2000) Unterrichtsgestaltung, verständnisvolles Lernen und multiple Zielerreichung im Mathematik- und Physikunterricht der gymnasialen Oberstufe [Instructional quality, insightful learning, and achieving multiple goals in upper secondary mathematics and physics instruction]. In: Baumert J, Bos W, Lehmann R (eds) TIMSS/III: Dritte Internationale Mathematik- und Naturwissenschaftsstudie: Mathematische und naturwissenschaftliche Bildung am Ende der Schullaufbahn, vol 2, Mathematische und physikalische Kompetenzen in der Oberstufe. Leske + Budrich, Opladen, pp 271–315

    Chapter  Google Scholar 

  • Baumert J, Kunter M (2006) Stichwort: Professionelle Kompetenz von Lehrkräften [Teachers’ professional competence]. Zeitschrift für Erziehungswissenschaft 9(4):469–520. doi:10.1007/s11618-006-0165-2

    Article  Google Scholar 

  • Baumert J, Blum W, Neubrand M (2004) Drawing the lessons from PISA-2000: long term research implications. In: Lenzen D, Baumert J, Watermann R, Trautwein U (eds) PISA und die Konsequenzen für die erziehungswissenschaftliche Forschung, vol 3, Zeitschrift für Erziehungswissenschaft. VS Verlag für Sozialwissenschaften, Wiesbaden, pp 143–157

    Chapter  Google Scholar 

  • Baumert J, Blum W, Brunner M, Dubberke T, Jordan A, Klusmann U, Tsai Y-M (2009) Professionswissen von Lehrkräften, kognitiv aktivierender Mathematikunterricht und die Entwicklung von mathematischer Kompetenz (COACTIV): Dokumentation der Erhebungsinstrumente [Professional competence of teachers, cognitively activating mathematics instruction, and the development of students’ mathematical literacy]. Materialien aus der Bildungsforschung, vol 83. Max Planck Institute for Human Development, Berlin

    Google Scholar 

  • Berliner DC (2001) Learning about and learning from expert teachers. Int J Educ Res 35(5):463–482. doi:10.1016/S0883-0355(02)00004-6

    Article  Google Scholar 

  • Blömeke S, Kaiser G, Lehmann R (eds) (2008) Professionelle Kompetenz angehender Lehrerinnen und Lehrer: Wissen, Überzeugungen und Lerngelegenheiten deutscher Mathematikstudierender und -referendare. Erste Ergebnisse zur Wirksamkeit der Lehrerausbildung [Professional competence of prospective teachers: knowledge, beliefs, and learning opportunities of mathematics teacher candidates in Germany. First findings on the efficacy of teacher education]. Waxmann, Münster

    Google Scholar 

  • Blömeke S, Kaiser G, Lehmann R (eds) (2010) TEDS-M 2008: Professionelle Kompetenz und Lerngelegenheiten angehender Mathematiklehrkräfte der Sekundarstufe I im internationalen Vergleich [TEDS-M 2008: professional competence and learning opportunities of prospective lower secondary mathematics teachers in international comparison]. Waxmann, Münster

    Google Scholar 

  • Blum W (2001) Was folgt aus TIMSS für Mathematikunterricht und Mathematiklehrerausbildung? [What are the implications of TIMSS for mathematics instruction and teacher education?]. In: BMBF (ed) TIMSS: Impulse für Schule und Unterricht. BMBF, Bonn, pp 75–83

    Google Scholar 

  • Brunner M, Krauss S (2010) Modellierung kognitiver Kompetenzen von Schülern und Lehrkräften mit dem Nested-Faktormodell [Modeling the cognitive competences of students and teachers using the nested factor model]. In: Bos W, Klieme E, Köller O (eds) Schule – Kompetenzentwicklung – Opportunitätsstrukturen. Waxmann, Münster, pp 105–125

    Google Scholar 

  • Brunner M, Kunter M, Krauss S, Baumert J, Blum W, Dubberke T, Neubrand M (2006) Welche Zusammenhänge bestehen zwischen dem fachspezifischen Professionswissen von Mathematiklehrkräften und ihrer Ausbildung sowie beruflichen Fortbildung? [How is the content-­specific professional knowledge of mathematics teachers related to their teacher education and in-service training?]. Zeitschrift für Erziehungswissenschaft 9(4):521–544. doi:10.1007/s11618-006-0166-1

    Google Scholar 

  • Christiansen B, Walther G (1986) Task and activity. In: Christiansen B, Howson AG, Otte M (eds) Perspectives on mathematics education. Reidel, Dordrecht, pp 243–307

    Chapter  Google Scholar 

  • de Corte E, Greer B, Verschaffel L (1996) Mathematics teaching and learning. In: Berliner DC, Calfee RC (eds) Handbook of educational psychology. Macmillan, New York, pp 491–549

    Google Scholar 

  • Degner S, Gruber H (2011) Persons in the shadow: how guidance works in the acquisition of expertise. In: Weber B, Marsal E, Dobashi T (eds) The politics of empathy: new interdisciplinary perspectives on an ancient phenomenon. Lit, Münster, pp 103–116

    Google Scholar 

  • Ericsson KA, Smith J (eds) (1991) Toward a general theory of expertise: prospects and limits. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Gesellschaft für Fachdidaktik e.V. (2005) Themenforum: Lehrerbildung [Topic forum: teacher education]. Mitteilung der Gesellschaft für Didaktik der Mathematik 81:64–81

    Google Scholar 

  • Grossman PL (1990) The making of a teacher: teacher knowledge and teacher education. Teachers College Press, New York

    Google Scholar 

  • Hashweh MZ (2005) Teacher pedagogical constructions: a reconfiguration of pedagogical content knowledge. Teach TeachTheory Pract 11(3):273–292

    Article  Google Scholar 

  • Hiebert J, Gallimore R, Stigler JW (2002) A knowledge base for the teaching profession: what would it look like and how can we get one? Educ Res 31(5):3–15. doi:10.3102/0013189X031005003

    Google Scholar 

  • Hill HC, Schilling SG, Ball DL (2004) Developing measures of teachers’ mathematics knowledge for teaching. Elem School J 105(1):11–30. doi:10.1086/428763

    Article  Google Scholar 

  • Klein F (1933) Elementarmathematik vom höheren Standpunkte aus [Elementary mathematics from a higher standpoint]. Springer, Berlin

    Google Scholar 

  • Kleickmann T, Richter D, Kunter M, Elsner J, Besser M, Krauss S, Baumert J (2013) Pedagogical content knowledge and content knowledge of mathematics teachers: The role of structural ­differences in teacher education. J Teach Educ 64:90–106. doi:10.1177/0022487112460398

    Google Scholar 

  • Krauss S (2009) Fachdidaktisches Wissen und Fachwissen von Mathematiklehrkräften der Sekundarstufe: Konzeptualisierung, Testkonstruktion und Konstruktvalidierung im Rahmen der COACTIV-Studie [Content knowledge and pedagogical content knowledge of secondary mathematics teachers: conceptualization and construct validation in the contest of the COACTIV study]. Unpublished habilitation thesis, University of Kassel

    Google Scholar 

  • Krauss S (2010) Das Experten-Paradigma in der Forschung zum Lehrerberuf [The expert paradigm in research on the teaching profession]. In: Terhart E, Benewitz H, Rothland M (eds) Handbuch der Forschung zum Lehrerberuf. Waxmann, Münster, pp 154–174

    Google Scholar 

  • Krauss S, Baumert J, Blum W (2008a) Secondary mathematics teachers’ pedagogical content knowledge and content knowledge: validation of the COACTIV constructs. Int J Math Educ (ZDM) 40(5):873–892. doi:10.1007/s11858-008-0141-9

    Article  Google Scholar 

  • Krauss S, Brunner M, Kunter M, Baumert J, Blum W, Neubrand M, Jordan A (2008b) Pedagogical content knowledge and content knowledge of secondary mathematics teachers. J Educ Psychol 100(3):716–725. doi:10.1037/0022-0663.100.3.716

    Article  Google Scholar 

  • Krauss S, Neubrand M, Blum W, Baumert J, Brunner M, Kunter M, Jordan A (2008c) Die Untersuchung des professionellen Wissens deutscher Mathematik-Lehrerinnen und -Lehrer im Rahmen der COACTIV-Studie [The investigation of the professional knowledge of German mathematics teachers in the context of the COACTIV study]. Journal für Mathematikdidaktik (JMD) 29(3/4):223–258

    Google Scholar 

  • Little TD, Cunningham WA, Shahar G, Widaman KF (2002) To parcel or not to parcel: exploring the question, weighting the merits. Struct Eq. Model 9:151–173. doi:10.1207/S15328007SEM0902_1

    Article  Google Scholar 

  • Ma L (1999) Knowing and teaching elementary mathematics: teachers’ understanding of fundamental mathematics in China and the United States. Erlbaum, Mahwah

    Google Scholar 

  • Matz M (1982) Towards a process model for high school algebra errors. In: Sleeman D, Brown JS (eds) Intelligent tutoring systems. Academic, London, pp 25–50

    Google Scholar 

  • Mayer RE (2004a) Teaching of subject matter. Annu Rev Psychol 55:715–744. doi:10.1146/annurev.psych.55.082602.133124

    Article  Google Scholar 

  • Mayer RE (2004b) Should there be a three-strikes rule against pure discovery learning? Am Psychol 59:14–19

    Article  Google Scholar 

  • McDiarmid GW, Ball DL, Anderson CW (1989) Why staying one chapter ahead doesn’t really work: subject-specific pedagogy. In: Reynolds M (ed) The knowledge base for the beginning teacher. Pergamon, New York, pp 193–205

    Google Scholar 

  • Messick S (1988) The once and future issues of validity: assessing the meaning and consequences of measurement. In: Wainer H, Braun H (eds) Test validity. Erlbaum, Hillsdale, pp 33–45

    Google Scholar 

  • Messick S (1989) Validity. In: Linn RL (ed) Educational measurement, 3rd edn. American Council on Education and Macmillan, New York, pp 13–103

    Google Scholar 

  • Muraki E, Bock RD (1996) Parscale (version 4). Scientific Software International, Lincolnwood

    Google Scholar 

  • Neubrand M, Seago N, in collaboration with Agudelo-Valderrama C, DeBlois L, Leikin R (2009) The balance of teacher knowledge: mathematics and pedagogy. In: Even R, Ball DL (eds) The professional education and development of teachers of mathematics. New ICMI study series 11, Springer, Berlin, pp 211–225

    Google Scholar 

  • Palmer DJ, Stough LM, Burdenski TK Jr, Gonzales M (2005) Identifying teacher expertise: an examination of researchers’ decision making. Educ Psychol 40:13–25

    Article  Google Scholar 

  • Ramist L, Lewis C, McCamley L (1990) Implications of using freshman GPA as the criterion for the predictive validity of the SAT. In: Willingham WW, Lewis C, Morgan R, Ramist L, Ramist L (eds) Predicting college grades: an analysis of institutional trends over two decades. Educational Testing Service, Princeton, pp 253–288

    Google Scholar 

  • Resnick LB, Williams Hall M (1998) Learning organizations for sustainable education reform. J Am Acad Arts Sci 127(4):89–118

    Google Scholar 

  • Rittle-Johnson B, Star JR (2007) Does comparing solution methods facilitate conceptual and procedural knowledge? An experimental study on learning to solve equations. J Educ Psychol 99(3):561–574. doi:10.1037/0022-0663.99.3.561

    Article  Google Scholar 

  • Rost J (2004) Lehrbuch Testtheorie Testkonstruktion [Handbook of classical test theory and test construction], 2nd edn. Huber, Berne

    Google Scholar 

  • Schmidt HG, Boshuizen HPA (1992) Encapsulation of biomedical knowledge. In: Evans DA, Patel VL (eds) Advanced models of cognition for medical training and practice. Springer, New York, pp 265–282

    Google Scholar 

  • Schwab JJ (1978) Science, curriculum and liberal education. University of Chicago Press, Chicago

    Google Scholar 

  • Shavelson RJ, Webb NM (1991) Generalizability theory: a primer. Sage, Newbury Park

    Google Scholar 

  • Shulman LS (1986) Those who understand: knowledge growth in teaching. Educ Res 15(2):4–14

    Google Scholar 

  • Shulman LS (1987) Knowledge and teaching: foundations of the new reform. Harv Educ Rev 57(1):1–22

    Google Scholar 

  • Silver EA, Ghousseini H, Gosen D, Charalambous C, Strawhun BTF (2005) Moving from rhetoric to praxis: issues faced by teachers in having students consider multiple solutions for problems in the mathematics classroom. J Math Behav 24:287–301. doi:10.1016/j.jmathb.2005.09.009

    Article  Google Scholar 

  • Simon HA, Hayes JR (1976) Understanding complex task instructions. In: Klahr D (ed) Cognition and instruction. Erlbaum, Hillsdale, pp 269–285

    Google Scholar 

  • Vosniadou S, Verschaffel L (2004) Conceptual change in mathematics learning and teaching [special issue]. Learn Instr 14(5):445–451

    Article  Google Scholar 

  • Warm TA (1989) Weighted likelihood estimation of ability in item response theory. Psychometrika 54:427–450. doi:10.1007/BF02294627

    Article  Google Scholar 

  • Williams G (2002) Identifying tasks that promote creative thinking in mathematics: a tool. In: Barton B, Irwin K, Pfannkuch M, Thomas M (eds) Mathematical education in the South Pacific: proceedings of the 25th annual conference of the Mathematics Education Research Group of Australasia, vol II. MERGA, Auckland, pp 698–705

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Krauss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Busine0ss Media New York

About this chapter

Cite this chapter

Krauss, S. et al. (2013). Mathematics Teachers’ Domain-Specific Professional Knowledge: Conceptualization and Test Construction in COACTIV. In: Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., Neubrand, M. (eds) Cognitive Activation in the Mathematics Classroom and Professional Competence of Teachers. Mathematics Teacher Education, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5149-5_8

Download citation

Publish with us

Policies and ethics