Skip to main content

Bioinspired Nanoscale Water Channel and its Potential Applications

  • Chapter
  • First Online:
Bioinspiration

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1739 Accesses

Abstract

The dynamics of water molecules confined in nanochannels is of great importance for designing novel molecular devices/machines/sensors, which have wide applications in nanotechnology, such as water desalination, chemical separation, sensing. In this chapter, inspired by the aquaporins, which are proteins embedded in the cell membrane that regulate the flow of water but stop the protons, we will discuss the mechanism of water channel gating and water channel pumping, where water molecules form single-filed structure. The single-filed water molecules can also serve as molecular devices for signal transmission, conversion, and multiplication. Moreover, the water in the channel may have great potential applications in designing the lab-in-tube to controllable manipulation of biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitesides, G.M.: The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)

    ADS  Google Scholar 

  2. Whitby, M., Quirke, N.: Fluid flow in carbon nanotubes and nanopipes. Nat. Nanotech. 2(2), 87–94 (2007)

    ADS  Google Scholar 

  3. Squires, T.M., Quake, S.R.: Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977 (2005)

    ADS  Google Scholar 

  4. Regan, B.C., Aloni, S., Ritchie, R.O., Dahmen, U., Zettl, A.: Carbon nanotubes as nanoscale mass conveyors. Nature 428(6986), 924–927 (2004)

    ADS  Google Scholar 

  5. Service, R.F.: Desalination freshens up. Science 313(5790), 1088–1090 (2006)

    Google Scholar 

  6. Holt, J.K., Park, H.G., Wang, Y.M., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A., Bakajin, O.: Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776), 1034–1037 (2006)

    ADS  Google Scholar 

  7. Bourlon, B., Wong, J., Miko, C., Forro, L., Bockrath, M.: A nanoscale probe for fluidic and ionic transport. Nat. Nanotech. 2(2), 104–107 (2007)

    ADS  Google Scholar 

  8. Besteman, K., Lee, J.O., Wiertz, F.G.M., Heering, H.A., Dekker, C.: Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3, 727–730 (2003)

    ADS  Google Scholar 

  9. Ghosh, S., Sood, A.K., Kumar, N.: Carbon nanotube flow sensors. Science 299(5609), 1042–1044 (2003)

    ADS  Google Scholar 

  10. Cambr, E.S., Schoeters, B., Luyckx, S., Goovaerts, E., Wenseleers, W.: Experimental observation of single-filed water filling of thin single-wall carbon nanotubes down to chiral index (5,3). Phys. Rev. Lett. 104(20), 207401 (2010)

    ADS  Google Scholar 

  11. Falk, K., Sedlmeier, F., Joly, L., Netz, R.R., Bocquet, L.: Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10(10), 4067–4073 (2010)

    ADS  Google Scholar 

  12. Liu, B., Li, X., Li, B., Xu, B., Zhao, Y.: Carbon nanotube based artificial water channel protein: membrane perturbation and water transportation. Nano Lett. 9(4), 1386–1394 (2009)

    ADS  Google Scholar 

  13. Yuan, Q., Zhao, Y.-P.: Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes. J. Am. Chem. Soc. 131(18), 6374–6376 (2009)

    Google Scholar 

  14. Zhao, Y.C., Song, L., Deng, K., Liu, Z., Zhang, Z.X., Yang, Y.L., Wang, C., Yang, H.F., Jin, A.Z., Luo, Q., Gu, C.Z., Xie, S.S., Sun, L.F.: Individual water-filled single-walled carbon nanotubes as hydroelectric power converters. Adv. Mater. 20(9), 1772 (2008)

    Google Scholar 

  15. Joseph, S., Aluru, N.R.: Why are carbon nanotubes fast transporters of water? Nano Lett. 8(2), 452–458 (2008)

    ADS  Google Scholar 

  16. Wang, B., Král, P.: Coulombic dragging of molecules on surfaces induced by separately flowing liquids. J. Am. Chem. Soc. 128(50), 15984–15985 (2006)

    Google Scholar 

  17. Majumder, M., Chopra, N., Andrews, R., Hinds, B.J.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438(7064), 44–44 (2005)

    ADS  Google Scholar 

  18. Fang, H., et al.: Dynamics of single-file water chains inside nanoscale channels: physics, biological significance and applications. J. Phys. D Appl. Phys. 41(10), 103002 (2008)

    ADS  Google Scholar 

  19. Wan, R., Fang, H.: Water transportation across narrow channel of nanometer dimension. Solid State Commun. 150(21–22), 968–975 (2010)

    ADS  Google Scholar 

  20. Craighead, H.: Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442(7101), 387–393 (2006)

    ADS  Google Scholar 

  21. Hummer, G., Rasaiah, J.C., Noworyta, J.P.: Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001)

    ADS  Google Scholar 

  22. Li, J.Y., Gong, X.J., Lu, H.J., Li, D., Fang, H.P., Zhou, R.H.: Electrostatic gating of a nanometer water channel. Proc. Natl. Acad. Sci. U. S. A. 104, 3687–3692 (2007)

    ADS  Google Scholar 

  23. Zhu, F., Schulten, K.: Water and proton conduction through carbon nanotubes as models for biological channels. Biophys. J. 85(1), 236–244 (2003)

    Google Scholar 

  24. Beckstein, O., Sansom, M.S.P.: Liquid–vapor oscillations of water in hydrophobic nanopores. Proc. Natl. Acad. Sci. U. S. A. 100(12), 7063–7068 (2003)

    ADS  Google Scholar 

  25. Reiter, G., Burnham, C., Homouz, D., Platzman, P.M., Mayers, J., Abdul-Redah, T., Moravsky, A.P., Li, J.C., Loong, C.K., Kolesnikov, A.I.: Anomalous behavior of proton zero point motion in water confined in carbon nanotubes. Phys. Rev. Lett. 97(24), 247801 (2006)

    ADS  Google Scholar 

  26. Sun, L., Crooks, R.M.: Single carbon nanotube membranes: a well-defined model for studying mass transport through nanoporous materials. J. Am. Chem. Soc. 122(49), 12340–12345 (2000)

    Google Scholar 

  27. Tenne, R.: Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotech. 1(2), 103–111 (2006)

    ADS  Google Scholar 

  28. Joseph, S., Mashl, R.J., Jakobsson, E., Aluru, N.R.: Electrolytic transport in modified carbon nanotubes. Nano Lett. 3(10), 1399–1403 (2003)

    ADS  Google Scholar 

  29. Denker, B.M., Smith, B.L., Kuhajda, F.P., Agre, P.: Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem. 263(30), 15634–15642 (1988)

    Google Scholar 

  30. Zeidel, M.L., Ambudkar, S.V., Smith, B.L., Agre, P.: Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31(33), 7436–7440 (1992)

    Google Scholar 

  31. Jensen, M.Ø., Tajkhorshid, E., Schulten, K.: Electrostatic tuning of permeation and selectivity in aquaporin water channels. Biophys. J. 85(5), 2884–2899 (2003)

    ADS  Google Scholar 

  32. de Groot, B.L., Grubmuller, H.: Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294(5550), 2353–2357 (2001)

    ADS  Google Scholar 

  33. Chakrabarti, N., Tajkhorshid, E., Roux, B., Pomès, R.: Molecular basis of proton blockage in aquaporins. Structure 12(1), 65–74 (2004)

    Google Scholar 

  34. Tajkhorshid, E., Nollert, P., Jensen, M.O., Miercke, L.J.W., O’Connell, J., Stroud, R.M., Schulten, K.: Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296(5567), 525–530 (2002)

    ADS  Google Scholar 

  35. Ilan, B., Tajkhorshid, E., Schulten, K., Voth, G.A.: The mechanism of proton exclusion in aquaporin channels. Proteins Struct. Funct. Bioinf. 55(2), 223–228 (2004)

    Google Scholar 

  36. Burykin, A., Warshel, A.: What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals. Biophys. J. 85(6), 3696–3706 (2003)

    ADS  Google Scholar 

  37. Patargias, G., Bond, P.J., Deol, S.S., Sansom, M.S.P.: Molecular dynamics simulations of GlpF in a Micelle vs in a Bilayer: conformational dynamics of a membrane protein as a function of environment. J. Phys. Chem. B 109(1), 575–582 (2004)

    Google Scholar 

  38. Vidossich, P., Cascella, M., Carloni, P.: Dynamics and energetics of water permeation through the aquaporin channel. Proteins Struct. Funct. Bioinf. 55(4), 924–931 (2004)

    Google Scholar 

  39. Sui, H., Han, B.-G., Lee, J.K., Walian, P., Jap, B.K.: Structural basis of water-specific transport through the AQP1 water channel. Nature 414(6866), 872–878 (2001)

    ADS  Google Scholar 

  40. Wan, R.Z., Li, J.Y., Lu, H.J., Fang, H.P.: Controllable water channel gating of nanometer dimensions. J. Am. Chem. Soc. 127(19), 7166–7170 (2005)

    Google Scholar 

  41. Branden, C., Tooze, J.: Introduction to protein structure. Garland Publishing, New York and London (1991)

    Google Scholar 

  42. Xiu, P., Zhou, B., Qi, W.P., Lu, H.J., Tu, Y.S., Fang, H.P.: Manipulating biomolecules with aqueous liquids confined within single-walled nanotubes. J. Am. Chem. Soc. 131(8), 2840–2845 (2009)

    Google Scholar 

  43. Gong, X.J., Li, J.Y., Lu, H.J., Wan, R.Z., Li, J.C., Hu, J., Fang, H.P.: A charge-driven molecular water pump. Nat. Nanotech. 2, 709–712 (2007)

    ADS  Google Scholar 

  44. Pan, X.L., Fan, Z.L., Chen, W., Ding, Y.J., Luo, H.Y., Bao, X.H.: Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 6(7), 507–511 (2007)

    ADS  Google Scholar 

  45. Yang, H.Q., Zhang, L., Zhong, L., Yang, Q.H., Li, C.: Enhanced cooperative activation effect in the hydrolytic kinetic resolution of Epoxides on [Co(salen)] catalysts confined in nanocages. Angew. Chem. Int. Ed. 46(36), 6861–6865 (2007)

    Google Scholar 

  46. Won, C.Y., Aluru, N.R.: Water permeation through a subnanometer boron nitride nanotube. J. Am. Chem. Soc. 129(10), 2748 (2007)

    Google Scholar 

  47. Eggers, D.K., Valentine, J.S.: Molecular confinement influences protein structure and enhances thermal protein stability. Protein Sci. 10(2), 250–261 (2001)

    Google Scholar 

  48. Shin, K., Obukhov, S., Chen, J.T., Huh, J., Hwang, Y., Mok, S., Dobriyal, P., Thiyagarajan, P., Russell, T.P.: Enhanced mobility of confined polymers. Nat. Mater. 6(12), 961–965 (2007)

    ADS  Google Scholar 

  49. Lucent, D., Vishal, V., Pande, V.S.: Protein folding under confinement: a role for solvent. Proc. Natl. Acad. Sci. U. S. A. 104(25), 10430–10434 (2007)

    ADS  Google Scholar 

  50. Zhang, S.Q., Cheung, M.S.: Manipulating biopolymer dynamics by anisotropic nanoconfinement. Nano Lett. 7(11), 3438–3442 (2007)

    ADS  Google Scholar 

  51. Sorin, E.J., Pande, V.S.: Nanotube confinement denatures protein helices. J. Am. Chem. Soc. 128(19), 6316–6317 (2006)

    Google Scholar 

  52. Koga, K., Gao, G.T., Tanaka, H., Zeng, X.C.: Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412(6849), 802–805 (2001)

    ADS  Google Scholar 

  53. Noon, W.H., Ausman, K.D., Smalley, R.E., Ma, J.P.: Helical ice-sheets inside carbon nanotubes in the physiological condition. Chem. Phys. Lett. 355(5–6), 445–448 (2002)

    ADS  Google Scholar 

  54. Mashl, R.J., Joseph, S., Aluru, N.R., Jakobsson, E.: Anomalously immobilized water: a new water phase induced by confinement in nanotubes. Nano Lett. 3(5), 589–592 (2003)

    ADS  Google Scholar 

  55. Striolo, A.: The mechanism of water diffusion in narrow carbon nanotubes. Nano Lett. 6(4), 633–639 (2006)

    ADS  Google Scholar 

  56. Raghavender, U.S., Kantharaju, Aravinda, S., Shamala, N., Balaram, P.: Hydrophobic peptide channels and encapsulated water wires. J. Am. Chem. Soc. 132(3), 1075–1086 (2010)

    Google Scholar 

  57. Reddy, G., Straub, J.E., Thirumalai, D.: Dry amyloid fibril assembly in a yeast prion peptide is mediated by long-lived structures containing water wires. Proc. Natl. Acad. Sci. U. S. A. 107(50), 21459–21464 (2010)

    ADS  Google Scholar 

  58. Xiu, P., Yang, Z.X., Zhou, B., Das, P., Fang, H.P., Zhou, R.H.: Urea-induced drying of hydrophobic nanotubes: comparison of different urea models. J. Phys. Chem. B 115(12), 2988–2994 (2011)

    Google Scholar 

  59. Tu, Y., Xiu, P., Wan, R., Hu, J., Zhou, R., Fang, H.: Water-mediated signal multiplication with Y-shaped carbon nanotubes. Proc. Natl. Acad. Sci. U. S. A. 106(43), 18120–18124 (2009)

    ADS  Google Scholar 

  60. Dokter, A.M., Woutersen, S., Bakker, H.J.: Anomalous slowing down of the vibrational relaxation of liquid water upon nanoscale confinement. Phys. Rev. Lett. 94(17), 178301 (2005)

    ADS  Google Scholar 

  61. Ju, S.P., Yang, S.H., Liao, M.L.: Study of molecular behavior in a water nanocluster: size and temperature effect. J. Phys. Chem. B 110(18), 9286–9290 (2006)

    Google Scholar 

  62. Vaitheeswaran, S., Thirumalai, D.: Hydrophobic and ionic interactions in nanosized water droplets. J. Am. Chem. Soc. 128(41), 13490–13496 (2006)

    Google Scholar 

  63. Sykes, M.T., Levitt, M.: Simulations of RNA base pairs in a nanodroplet reveal solvation-dependent stability. Proc. Natl. Acad. Sci. U. S. A. 104(30), 12336–12340 (2007)

    ADS  Google Scholar 

  64. Yeh, I.C., Hummer, G.: Nucleic acid transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. U. S. A. 101(33), 12177–12182 (2004)

    ADS  Google Scholar 

  65. Zimmerli, U., Koumoutsakos, P.: Simulations of electrophoretic RNA transport through transmembrane carbon nanotubes. Biophys. J. 94(7), 2546–2557 (2008)

    Google Scholar 

  66. Insepov, Z., Wolf, D., Hassanein, A.: Nanopumping using carbon nanotubes. Nano Lett. 6(9), 1893–1895 (2006)

    ADS  Google Scholar 

  67. Longhurst, M.J., Quirke, N.: Temperature-driven pumping of fluid through single-walled carbon nanotubes. Nano Lett. 7(11), 3324–3328 (2007)

    ADS  Google Scholar 

  68. Wang, Z.K., Ci, L.J., Chen, L., Nayak, S., Ajayan, P.M., Koratkar, N.: Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes. Nano Lett. 7(3), 697–702 (2007)

    ADS  Google Scholar 

  69. Savariar, E.N., Krishnamoorthy, K., Thayumanavan, S.: Molecular discrimination inside polymer nanotubules. Nat. Nanotech. 3(2), 112–117 (2008)

    ADS  Google Scholar 

  70. Kral, P., Tomanek, D.: Laser-driven atomic pump. Phys. Rev. Lett. 82(26), 5373–5376 (1999)

    ADS  Google Scholar 

  71. Balbach, J.J., Ishii, Y., Antzutkin, O.N., Leapman, R.D., Rizzo, N.W., Dyda, F., Reed, J., Tycko, R.: Amyloid fibril formation by A beta(16–22), a seven-residue fragment of the Alzheimer’s beta-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39(45), 13748–13759 (2000)

    Google Scholar 

  72. Bonomi, M., Gervasio, F.L., Tiana, G., Provasi, D., Broglia, R.A., Parrinello, M.: Insight into the folding inhibition of the HIV-1 protease by a small peptide. Biophys. J. 93(8), 2813–2821 (2007)

    ADS  Google Scholar 

  73. Bandaru, P.R., Daraio, C., Jin, S., Rao, A.M.: Novel electrical switching behaviour and logic in carbon nanotube Y-junctions. Nat. Mater. 4(9), 663–666 (2005)

    ADS  Google Scholar 

  74. Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C.: Logic circuits with carbon nanotube transistors. Science 294(5545), 1317–1320 (2001)

    ADS  Google Scholar 

  75. Fan, R., Yue, M., Karnik, R., Majumdar, A., Yang, P.D.: Polarity switching and transient responses in single nanotube nanofluidic transistors. Phys. Rev. Lett. 95(8), 086607 (2005)

    ADS  Google Scholar 

  76. Chen, F., Hihath, J., Huang, Z., Li, X., Tao, N.J.: Measurement of single-molecule conductance. Annu. Rev. Phys. Chem. 58(1), 535–564 (2007)

    ADS  Google Scholar 

  77. Heath, J.R.: Molecular electronics. Annu. Rev. Mater. Res. 39(1), 1–23 (2009)

    ADS  Google Scholar 

  78. Drummond, T., Hill, M., Barton, J.: Electrochemical DNA sensors. Nat. Biotechnol. 21(10), 1192–1199 (2003)

    Google Scholar 

  79. Yuan, G.D., Zhang, W.J., Jie, J.S., Fan, X., Zapien, J.A., Leung, Y.H., Luo, L.B., Wang, P.F., Lee, C.S., Lee, S.T.: p-Type ZnO nanowire arrays. Nano Lett. 8(8), 2591–2597 (2008)

    ADS  Google Scholar 

  80. Kong, J., Franklin, N., Zhou, C., Chapline, M., Peng, S., Cho, K., Dai, H.: Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (1999)

    ADS  Google Scholar 

  81. Cui, Y., Wei, Q., Park, H., Lieber, C.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289 (2001)

    ADS  Google Scholar 

  82. Li, D., Song, S., Fan, C.: Target-responsive structural switching for nucleic acid-based sensors. Acc. Chem. Res. 43(5), 631–641 (2010)

    Google Scholar 

  83. Bennett, M., Zukin, R.: Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41(4), 495–511 (2004)

    Google Scholar 

  84. Connors, B., Long, M.: Electrical synapses in the mammalian brain. Annu. Rev. Neurosci. 27, 393–418 (2004)

    Google Scholar 

  85. Bartos, M., Vida, I., Jonas, P.: Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8(1), 45–56 (2007)

    Google Scholar 

  86. Söhl, G., Maxeiner, S., Willecke, K.: Expression and functions of neuronal gap junctions. Nat. Rev. Neurosci. 6, 191 (2005)

    Google Scholar 

  87. Hormuzdi, S., Pais, I., LeBeau, F., Towers, S., Rozov, A., Buhl, E., Whittington, M., Monyer, H.: Impaired electrical signaling disrupts gamma frequency oscillations in Connexin 36-Deficient Mice. Neuron 31, 487–495 (2001)

    Google Scholar 

  88. Amitai, Y., Gibson, J., Beierlein, M., Patrick, S., Ho, A., Connors, B., Golomb, D.: The spatial dimensions of electrically coupled networks of interneurons in the neocortex. J. Neurosci. 22(10), 4142 (2002)

    Google Scholar 

  89. Zoidl, G., Dermietzel, R.: On the search for the electrical synapse: a glimpse at the future. Cell Tissue Res. 310(2), 137–142 (2002)

    Google Scholar 

  90. Pfeuty, B., Mato, G., Golomb, D., Hansel, D.: Electrical synapses and synchrony: the role of intrinsic currents. J. Neurosci. 23(15), 6280 (2003)

    Google Scholar 

  91. Smock, R.G., Gierasch, L.M.: Sending signals dynamically. Science 324(5924), 198–203 (2009)

    ADS  Google Scholar 

  92. Tsai, C.-J., del Sol, A., Nussinov, R.: Allostery: absence of a change in shape does not imply that allostery is not at play. J. Mol. Biol. 378(1), 1–11 (2008)

    Google Scholar 

  93. Tsai, C., Sol, A., Nussinov, R.: Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms. Mol. Biosyst. 5(3), 207–216 (2009)

    Google Scholar 

  94. Sethna, J.: Statistical mechanics: entropy, order parameters, and complexity. Oxford University Press, USA (2006)

    MATH  Google Scholar 

  95. Dudko, O.: Statistical mechanics: entropy, order parameters, and complexity. J. Stat. Phys. 126(2), 429–430 (2007)

    MathSciNet  ADS  Google Scholar 

  96. de Jonge, J.J., Ratner, M.A., de Leeuw, S.W., Simonis, R.O.: Molecular dipole chains III: energy transfer. J. Phys. Chem. B 108(8), 2666–2675 (2004)

    Google Scholar 

  97. de Jonge, J.J., Ratner, M.A., de Leeuw, S.W., Simonis, R.O.: Controlling the energy transfer in dipole chains. J. Phys. Chem. B 110(1), 442–446 (2005)

    Google Scholar 

  98. de Jonge, J.J., Ratner, M.A., de Leeuw, S.W.: Local field controlled switching in a one-dimensional dipolar array. J. Phys. Chem. C 111(9), 3770–3777 (2007)

    Google Scholar 

  99. Ball, P.: Water as an active constituent in cell biology. Chem. Rev. 108(1), 74–108 (2008)

    Google Scholar 

  100. Zhou, R.H., Huang, X.H., Margulis, C.J., Berne, B.J.: Hydrophobic collapse in multidomain protein folding. Science 305(5690), 1605–1609 (2004)

    ADS  Google Scholar 

  101. Brewer, M.L., Schmitt, U.W., Voth, G.A.: The formation and dynamics of proton wires in channel environments. Biophys. J. 80(4), 1691–1702 (2001)

    Google Scholar 

  102. Pomes, R., Roux, B.: Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel. Biophys. J. 82(5), 2304–2316 (2002)

    ADS  Google Scholar 

  103. Beckstein, O., Biggin, P.C., Sansom, M.S.P.: A hydrophobic gating mechanism for nanopores. J. Phys. Chem. B 105(51), 12902–12905 (2001)

    Google Scholar 

  104. Köfinger, J., Hummer, G., Dellago, C.: Macroscopically ordered water in nanopores. Proc. Natl. Acad. Sci. U. S. A. 105(36), 13218–13222 (2008)

    ADS  Google Scholar 

  105. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684–3690 (1984)

    ADS  Google Scholar 

  106. Berendsen, H.J.C., van der Spoel, D., van Drunen, R.: GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91(1–3), 43–56 (1995)

    ADS  Google Scholar 

  107. Hua, L., Zhou, R., Thirumalai, D., Berne, B.: Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proc. Natl. Acad. Sci. U. S. A. 105(44), 16928 (2008)

    ADS  Google Scholar 

  108. Lindahl, E., Hess, B., van der Spoel, D.: GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7(8), 306–317 (2001)

    Google Scholar 

  109. Zhou, R.: Exploring the protein folding free energy landscape: coupling replica exchange method with P3ME/RESPA algorithm. J. Mol. Graph. Model 22(5), 451–463 (2004)

    Google Scholar 

  110. Hua, L., Huang, X., Zhou, R., Berne, B.J.: Dynamics of water confined in the interdomain region of a multidomain protein. J. Phys. Chem. B 110(8), 3704–3711 (2006)

    Google Scholar 

  111. Liu, P., Huang, X., Zhou, R., Berne, B.J.: Hydrophobic aided replica exchange: an efficient algorithm for protein folding in explicit solvent. J. Phys. Chem. B 110(38), 19018–19022 (2006)

    Google Scholar 

  112. Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: an N [center-dot] log(N) method for Ewald sums in large systems. J. Chem. Phys. 98(12), 10089–10092 (1993)

    ADS  Google Scholar 

  113. Papadopoulos, C., Rakitin, A., Li, J., Vedeneev, A.S., Xu, J.M.: Electronic transport in Y-junction carbon nanotubes. Phys. Rev. Lett. 85(16), 3476 (2000)

    ADS  Google Scholar 

  114. Satishkumar, B.C., Thomas, P.J., Govindaraj, A., Rao, C.N.R.: Y-junction carbon nanotubes. Appl. Phys. Lett. 77(16), 2530–2532 (2000)

    ADS  Google Scholar 

  115. Li, W.Z., Wen, J.G., Ren, Z.F.: Straight carbon nanotube Y junctions. Appl. Phys. Lett. 79(12), 1879–1881 (2001)

    ADS  Google Scholar 

  116. Deepak, F.L., Govindaraj, A., Rao, C.N.R.: Synthetic strategies for Y-junction carbon nanotubes. Chem. Phys. Lett. 345(1–2), 5–10 (2001)

    ADS  Google Scholar 

  117. Terrones, M., Banhart, F., Grobert, N., Charlier, J.C., Terrones, H., Ajayan, P.M.: Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89(7), 075505 (2002)

    ADS  Google Scholar 

  118. Gothard, N., Daraio, C., Gaillard, J., Zidan, R., Jin, S., Rao, A.M.: Controlled growth of Y-junction nanotubes using Ti-Doped vapor catalyst. Nano Lett. 4(2), 213–217 (2004)

    ADS  Google Scholar 

  119. Liu, P., Huang, X., Zhou, R., Berne, B.: Observation of a dewetting transition in the collapse of the melittin tetramer. Nature 437(7055), 159–162 (2005)

    ADS  Google Scholar 

  120. Søgaard-Andersen, L.: Cell polarity, intercellular signalling and morphogenetic cell movements in Myxococcus xanthus. Curr. Opin. Microbiol. 7(6), 587–593 (2004)

    Google Scholar 

  121. Yang, Z.: Cell polarity signaling in Arabidopsis. Annu. Rev. Cell Dev. Bi. 24, 551–575 (2008)

    Google Scholar 

  122. Fuller-Espie, S., Hoffman Towler, P., Wiest, D., Tietjen, I., Spain, L.: Transmembrane polar residues of TCR beta chain are required for signal transduction. Int. Immunol. 10(7), 923 (1998)

    Google Scholar 

  123. Jones, C., Roper, V.C., Foucher, I., Qian, D., Banizs, B., Petit, C., Yoder, B.K., Chen, P.: Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat. Genet. 40(1), 69–77 (2008)

    Google Scholar 

  124. Ganner, A., Lienkamp, S., Schäfer, T., Romaker, D., Wegierski, T., Park, T., Spreitzer, S., Simons, M., Gloy, J., Kim, E.: Regulation of ciliary polarity by the APC/C. Proc. Natl. Acad. Sci. U. S. A. 106(42), 17799 (2009)

    ADS  Google Scholar 

  125. Axelrod, J.: Unipolar membrane association of Dishevelled mediates Frizzled planar cell polarity signaling. Gene. Dev. 15(10), 1182 (2001)

    Google Scholar 

  126. Mitchell, B., Jacobs, R., Li, J., Chien, S., Kintner, C.: A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 447(7140), 97–101 (2007)

    ADS  Google Scholar 

  127. Miao, L., Seminario, J.: Molecular dynamics simulations of signal transmission through a glycine peptide chain. J. Chem. Phys. 127, 134708 (2007)

    ADS  Google Scholar 

  128. Li, J.-Y., Yang, Z.-X., Fang, H.-P., Zhou, R.-H., Tang, X.-W.: Effect of the carbon-nanotube length on water permeability. Chin. Phys. Lett. 24(9), 2710–2713 (2007)

    ADS  Google Scholar 

  129. Lu, H., Li, J., Gong, X., Wan, R., Zeng, L., Fang, H.: Water permeation and wavelike density distributions inside narrow nanochannels. Phys. Rev. B 77(17), 174115 (2008)

    ADS  Google Scholar 

  130. Lu, H.-J., Gong, X.-J., Wang, C.-L., Fang, H.-P., Wan, R.-Z.: Effect of vibration on water transport through carbon nanotubes. Chin. Phys. Lett. 25(3), 1145–1148 (2008)

    ADS  Google Scholar 

  131. Wu, L., Wu, F., Kou, J., Lu, H., Liu, Y.: Effect of the position of constriction on water permeation across a single-walled carbon nanotube. Phy. Rev. E 83(6), 061913 (2011)

    ADS  Google Scholar 

  132. Tu, Y., Zhou, R., Fang, H.: Signal transmission, conversion and multiplication by polar molecules confined in nanochannels. Nanoscale 2(8), 1976–1983 (2010)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiping Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fang, H., Wang, C., Wan, R., Lu, H., Tu, Y., Xiu, P. (2012). Bioinspired Nanoscale Water Channel and its Potential Applications. In: Liu, X. (eds) Bioinspiration. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5372-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5372-7_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5303-1

  • Online ISBN: 978-1-4614-5372-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics