Skip to main content

Optical Sensing Methods for Metal Oxide Nanomaterials

  • Chapter
  • First Online:
Metal Oxide Nanomaterials for Chemical Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 2726 Accesses

Abstract

Optical analysis of metal oxides as a means of transduction in sensing devices provides an alternative method for the detection of target analytes. The optical properties of metal oxides are rich with opportunity as luminescence, dielectric function changes and optically active dopants are all sensitive to environmental changes and can be utilized in a sensing device. A detailed description of the latest work on the photoluminescence of metal oxides will be provided, with a focus on ZnO, SnO2 and TiO2 nanoscale thin films as well as nanorods. Changes in the dielectric function of perovskite metal oxide coated long period fiber gratings has been shown to be a convenient sensing device and results pertaining to these metal oxides containing alkaline earth metals and their use in the detection of CO2 will be highlighted. Optically active dopants, pertaining specifically to metal nanoparticles such as Au, Cu and Ag, can serve as beacons for reactions and environmental changes within metal oxide nanocomposite thin films through the interrogation of changes in their plasmonic properties. In particular sensing applications within harsh conditions, including elevated temperature and either oxidizing or reduction gas environments will be detailed. Each of these optical techniques will be reviewed and any key environmental, film deposition methods or reaction conditions will be highlighted in light of their potential effects on sensor detection limits, sensitivity or selectivity characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Littieri S, Setaro A, Baratto C, Comini E, Faglia G, Sberveglieri G, Maddalena P (2008) On the mechanism of photoluminescence quenching in tin dioxide nanowires by NO2 adsorption. New J Phys 10:043013

    Article  Google Scholar 

  2. Valerini D, Creti A, Caricato AP, Lomascolo M, Rella R, Martino M (2010) Optical gas sensing through nanostructured ZnO films with different morphologies. Sens Act B 145:167

    Article  Google Scholar 

  3. Barrato C, Todros S, Faglia G, Comini E, Sberveglieri G, Lettieri S, Santamaria L, Maddalena P (2009) Luminescence response of ZnO nanowires to gas adsorption. Sens Act B 140:461

    Article  Google Scholar 

  4. Shalish I, Temkin H, Narayanamurti V (2004) Size dependent surface luminescence in ZnO nanowires. Phys Rev B 69:245401

    Article  Google Scholar 

  5. Faglia G, Barrato C, Sberveglieri G, Zha M, Zappettini A (2005) Adsorption effects of NO2 at ppm level on visible response of SnO2 nanobelts. Appl Phys Lett 86:011923

    Article  Google Scholar 

  6. Hu JQ, Bando Y, Goldberg D (2003) Self catalyst growth and optical properties of novel SnO2 fishbone-like nanoribbons. Chem Phys Lett 372:758

    Article  CAS  Google Scholar 

  7. Setaro A, Lettieri S, Diamare D, Maddalena P, Malagu C, Carotta MC, Martinelli G (2008) Nanograined anatase titania-based optochemical gas detection. New J Phys 10:053030

    Article  Google Scholar 

  8. Wei X, Wei T, Xiao H, Lin YS (2008) Nanostructured Pd long period fiber gratings integrated optical sensor for hydrogen detection. Sens Act B 134:687

    Article  Google Scholar 

  9. Wei X, Wei T, Li J, Lan X, Xiao H, Lin YS (2010) Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection. Sens Act B 144:260

    Article  Google Scholar 

  10. Shao Z, Yang W, Cong Y, Dong H, Tong J, Xiong G (2000) Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3 − δ oxygen membrane. J Membr Sci 172:177

    Article  CAS  Google Scholar 

  11. Tanahashi I, Manabe Y, Tohda T, Sasaki S, Nakamura A (1996) Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method. J Appl Phys 79:1244

    Article  CAS  Google Scholar 

  12. Liao HB, Xiao RF, Wong GKL (1997) Large third-order nonlinear optical susceptibility of Au-Al2O3 composite films near the resonant frequency. Appl Phys B: Lasers Opt 65:673

    Article  CAS  Google Scholar 

  13. Liao H, Xiao RF, Wong H, Wong KS, Wong GKL (1998) Large third-order optical nonlinearity in Au: TiO2 composite films measured on a femtosecond time scale. Appl Phys Lett 72:1717

    Article  Google Scholar 

  14. MacFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057

    Article  Google Scholar 

  15. Ando M, Kobayashi T, Iijima S, Haruta M (2003) Optical CO sensitivity of Au–CuO composite film by use of the plasmon absorption change. Sens Act B 96:589

    Article  Google Scholar 

  16. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, New York, p 23

    Google Scholar 

  17. Maier SA (2010) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  18. Sosa IO, Noguez C, Barrera RG (2003) Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B 107:6269

    Article  CAS  Google Scholar 

  19. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Plasmonics 2:107

    Google Scholar 

  20. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293

    Article  CAS  Google Scholar 

  21. Murray WA, Barnes WL (2007) Plasmonic materials. Adv Mater 19:3771

    Article  CAS  Google Scholar 

  22. Jain PK, El-Sayed MA (2007) Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells. J Phys Chem C Lett 111:17451

    Article  CAS  Google Scholar 

  23. Haick H (2007) Chemical sensors based on molecularly modified metallic nanoparticles. J Phys D Appl Phys 40:7173

    Article  CAS  Google Scholar 

  24. Nath N, Chilkoti A (2004) Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem 76:5370

    Article  CAS  Google Scholar 

  25. Ando M, Kobayashi T, Iijima S, Haruta M (2003) Optical CO sensitivity of Au-CuO composite film by use of the plasmon absorption change. Sens Act B 96:589

    Article  Google Scholar 

  26. Rodriguez JA, Liu P, Hrbek J, Perez M, Evans J (2008) Water–gas shift activity of Au and Cu nanoparticles supported on molybdenum oxides. J Molec Catal A 281:59

    Article  CAS  Google Scholar 

  27. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166

    Article  CAS  Google Scholar 

  28. Buso D, Pacifico J, Martucci A, Mulvaney P (2007) Gold-nanoparticle-doped TiO2 semiconductor thin films: optical characterization. Adv Funct Mater 17:347

    Article  CAS  Google Scholar 

  29. Buso D, Post M, Cantalini C, Mulvaney P, Martucci A (2008) Gold nanoparticle-doped TiO2 semiconductor thin films: gas sensing properties. Adv Funct Mater 18:3843

    Article  CAS  Google Scholar 

  30. Buso D, Guglielmi M, Martucci A, Mattei G, Mazzoldi P, Sada C, Post ML (2008) Growth of cookie-like Au/NiO nanoparticles in SiO2 Sol-gel films and their optical gas sensing properties. Cryst Growth Des 8:744

    Article  CAS  Google Scholar 

  31. Buso D, Busato G, Gugliemi M, Martucci A, Bello V, Mattei G, Mazzoldi P, Post ML (2007) Selective optical detection of H2 and CO with SiO2 sol-gel films containing NiO and Au particles. Nanotechnology 18:475505

    Article  Google Scholar 

  32. Gaspera ED, Guglielmi M, Agnoli S, Granozzi G, Post ML, Bello V, Mattei G, Martucci A (2010) Au Nanoparticles in nanocrystalline TiO2-NiO films for SPR based selective H2S gas sensing. Chem Mater 22:3407

    Article  Google Scholar 

  33. MacFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057

    Article  Google Scholar 

  34. Liao H, Xiao RF, Wong H, Wong KS, Wong GKL (1998) Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale. Appl Phys Lett 72:1817

    Article  CAS  Google Scholar 

  35. Yang Y, Hori M, Hayakawa T, Nogami M (2005) Self-assembled 3-dimensional arrays of Au@SiO2 core-shell nanoparticles for enhanced optical nonlinearities. Surf Sci 579:215

    Article  CAS  Google Scholar 

  36. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  37. Nowotny J, Bak T, Nowotny MK, Sorrell CC (2005) Charge transfer at oxygen/zirconia interface at elevated temperatures. Adv Appl Ceram 104:147–231

    Article  CAS  Google Scholar 

  38. Henrich VE, Cox PA (1994) The surface science of metal oxides. Cambridge University Press, United Kingdom

    Google Scholar 

  39. Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng, B 139:1

    Article  CAS  Google Scholar 

  40. Suna C, Stimming U (2007) Recent anode advances in solid oxide fuel cells. J Power Sources 171:247

    Article  Google Scholar 

  41. Fergus JW (2007) Materials for high température electrochemical NOx gas sensors. Sens Act B 121:652

    Article  Google Scholar 

  42. Fergus JW (2007) Solid électrolyte based sensors for the measurement of CO and hydrocarbon gases. Sens Act B 122:683

    Article  Google Scholar 

  43. Docquier N, Candel S (2002) Combustion control and sensors: a Review. Prog Energy Combust Sci 28:107

    Article  CAS  Google Scholar 

  44. Takeguchi T, Kikuchi R, Yano T, Eguchi K, Murata K (2003) Effect of precious metal addition to Ni-YSZ cermet on reforming of CH4 and electrochemical activity as SOFC anode. Catal Today 84:217

    Article  CAS  Google Scholar 

  45. Bergveld P (2003) Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sens Act B 88:1–20

    Google Scholar 

  46. Sirinakis G, Siddique R, Dunn KA, Efstathiadis H, Carpenter MA, Kaloyeros AE, Sun L (2005) Spectro-ellipsometric characterization of Au-Y2O3-stabilized ZrO2 nanocomposite Films. J Mater Res 20:3320

    Article  CAS  Google Scholar 

  47. Sirinakis G, Siddique R, Manning I, Rogers PH, Carpenter MA (2006) Development and characterization of Au − YSZ surface plasmon resonance based sensing materials: high temperature detection of CO. J Phys Chem B 110:13508

    Article  CAS  Google Scholar 

  48. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice-Hall, USA

    Google Scholar 

  49. Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@TiO2 Core − shell composite clusters under UV − Irradiation. J Am Chem Soc 127:3928

    Article  CAS  Google Scholar 

  50. Oldfield G, Ung T, Mulvaney P (2000) Au@SnO2 core–shell nanocapacitors. Adv Mater 12:1519

    Article  CAS  Google Scholar 

  51. Rogers PH, Sirinakis G, Carpenter MA (2008) Direct observations of electrochemical reactions within Au-YSZ thin films via absorption shifts in the Au nanoparticle surface plasmon resonance. J Phys Chem C 112:6749–6757

    Article  CAS  Google Scholar 

  52. Rogers PH, Carpenter MA (2008) Plasmonic based detection of NO2 in a harsh environment. J Phys Chem C 112:8784

    Article  CAS  Google Scholar 

  53. Martinez AM, Kak AC (2001) PCA vs. LDA. IEEE Trans Patt Analy Mach Intell 23:228

    Google Scholar 

  54. Sysoev VV, Goschnick J, Schneider T, Strelcov E, Kolmakov A (2007) A gradient microarray electronic nose based on percholating SnO2 nanowire sensing elements. Nanoletters 7:3182

    Article  CAS  Google Scholar 

  55. Hai Z, Wang J (2006) Electronic nose and data analysis for detection of maize oil adulteration in sesame oil. Sens Act B 119:449

    Article  Google Scholar 

  56. Musatov VY, Sysoev VV, Sommer M, Kiselev I (2010) Assessment of meat freshness with metal oxide sensor microarray electronic nose: a practical approach. Sens Act B 144:99

    Article  Google Scholar 

  57. Lerma-Garcia MJ, Cerretani L, Cevoli C, Simo-Alfonso EF, Bendini A, Gallina Toschi T (2010) Use of electronic nose to determine defect percentage in oils. comparison with sensory panel results. Sens Act B 147:283

    Google Scholar 

  58. Srivastava JK, Pandey P, Jha SK, Mishra VN, Dwivedi R (2011) Chemical vapor identification by plasma treated thick film tin oxide gas sensor array and pattern recognition. Sens Transd 125:42

    CAS  Google Scholar 

  59. Wu Y, Na N, Zhang S, Wang X, Liu D, Zhang X (2009) Discrimination and identification of flavors with catalytic nanomaterial-based optical chemosensor array. Analy Chem 81:961

    Article  CAS  Google Scholar 

  60. Joy NA, Nandasiri MI, Rogers PH, Jiang W, Varga T, Kuchibhatla SVNT, Thevuthasan S, Carpenter MA (2012) Selective plasmonic gas sensing: H2, NO2 and CO spectral discrimination by a single Au-CeO2 nanocomposite film. Analy Chem 84:5025

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author’s work was supported in part by the United States Department of Energy National Energy Technology Laboratory under contract number DE-NT0007918. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the United States Department of Energy National Energy Technology Laboratory. Funding for support of this work is also acknowledged from the National Science Foundation (1006399) and the NYSTAR Environmental Quality Systems Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Carpenter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Joy, N.A., Carpenter, M.A. (2013). Optical Sensing Methods for Metal Oxide Nanomaterials. In: Carpenter, M., Mathur, S., Kolmakov, A. (eds) Metal Oxide Nanomaterials for Chemical Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5395-6_12

Download citation

Publish with us

Policies and ethics