Skip to main content

Introduction to Bifurcation and Stability

  • Chapter
Introduction to Perturbation Methods

Part of the book series: Texts in Applied Mathematics ((TAM,volume 20))

  • 11k Accesses

Abstract

On several occasions when working out examples in the earlier chapters, we came across problems that had more than one solution. Such situations are not uncommon when studying nonlinear problems, and we are now going to examine them in detail. The first step is to determine when multiple solutions appear. Once the solutions are found, the next step is to determine if they are stable. Thus, we will focus our attention on what is known as linear stability theory. In terms of perturbation methods, almost all the tools we need were developed in earlier chapters. For example, the analysis of steady-state bifurcation uses only regular expansions (Chap. 1), and the stability arguments will use regular and multiple-scale expansions (Chap. 3). On certain examples, such as when studying relaxation dynamics, we will use matched asymptotic expansions (Chap. 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. A. Batista and J. M. Carlson. Bifurcations from steady sliding to stick slip in boundary lubrication. Phys. Rev. E, 57 (5): 4986–4996, May 1998.

    Article  Google Scholar 

  • M. Braun. Differential Equations and Their Applications: An Introduction to Applied Mathematics. Springer, New York, 4th edition, 1993.

    Book  Google Scholar 

  • J. B. Collings and D. J. Wollkind. A global analysis of a temperature-dependent model system for a mite predator-prey interaction. SIAM J Appl Math, 50: 1348–1372, 1990.

    Article  MathSciNet  Google Scholar 

  • M. G. Crandall and P. H. Rabinowitz. Mathematical theory of bifurcation. In C. Bardos and D. Bessis, editors, Bifurcation Phenomena in Mathematical Physics and Related Topics, pages 3–46, Boston, 1980. D. Reidel Pub Co.

    Google Scholar 

  • J. M. Cushing. Integrodifferential Equations and Delay Models in Population Dynamics. Lecture Notes in Biomathematics. Springer, Berlin, 1977.

    Google Scholar 

  • R. C. DiPrima, W. Eckhaus, and L. A. Segel. Non-linear wave-number interaction in near-critical two-dimensional flows. J Fluid Mech, 49: 705–744, 1971.

    Article  Google Scholar 

  • A. C. Eringen. On the non-linear vibration of elastic bars. Q Applied Math IX, pages 361–369, 1952.

    Google Scholar 

  • G. B. Ermentrout. Oscillator death in populations of “all to all” coupled nonlinear oscillators. Physica D, 41 (2): 219–231, 1990.

    Article  MathSciNet  Google Scholar 

  • L. Euler. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive Solutio problematis isoperimetrici latissimo sensu accepti. Apud Marcum-Michaelem Bousquet and Socios, Lausanne, 1774.

    Google Scholar 

  • N. Ganapathisubramanian and K. Showalter. Relaxation behavior in a bistable chemical system near the critical point and hysteresis limits. J Chem Phys, 84: 5427–5436, 1986.

    Article  Google Scholar 

  • M. Gilli, M. Bonnin, and F. Corinto. Weakly connected oscillatory networks for dynamic pattern recognition. In R. A. Carmona and G. Linan-Cembrano, editors, Bioengineered and Bioinspired Systems II. Proceedings of SPIE, volume 5839, pages 274–285, 2005.

    Google Scholar 

  • P. Gray and S. K. Scott. Chemical Oscillations and Instabilities: Non-linear Chemical Kinetics. Oxford University Press, Oxford, 1994.

    Google Scholar 

  • P. Gray, S. K. Scott, and J. H. Merkin. The Brusselator model of oscillatory reactions. J Chem Soc, Faraday Trans, 84: 993–1012, 1988.

    Article  Google Scholar 

  • J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, 1983.

    Book  Google Scholar 

  • J. K. Hale and H. Kocak. Dynamics and Bifurcations. Springer, New York, 1991.

    Book  Google Scholar 

  • J. H. Heinbockel and R. A. Struble. Resonant oscillations of an extensible pendulum. ZAMP, 14: 262–269, 1963.

    MATH  Google Scholar 

  • D. Hester. The nonlinear theory of a class of transistor oscillators. IEEE Trans Circuit Theory, 15: 111–117, 1968.

    Article  Google Scholar 

  • M. H. Holmes and F. M. Stein. Sturmian theory and transformations for the Riccati equation. Port Math, 35: 65–73, 1976.

    MathSciNet  MATH  Google Scholar 

  • F. C. Hoppensteadt and E. M. Izhikevich. Weakly connected neural networks. Springer, Berlin, 1997.

    Book  Google Scholar 

  • F. C. Hoppensteadt and E. M. Izhikevich. Oscillatory neurocomputers with dynamic connectivity. Phys Rev Lett, 82 (14): 2983–2986, Apr 1999.

    Article  Google Scholar 

  • R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge 1990.

    MATH  Google Scholar 

  • P. Horwitz and W. Hill. The Art of Electronics. Cambridge University Press, Cambridge, 2nd edition, 1989.

    Google Scholar 

  • G. E. Hutchinson. Circular causal systems in ecology. In R. W. Miner, editor, Annals of the New York Academy of Science, pages 221–246, New York, 1948. New York Academy of Science.

    Google Scholar 

  • I. Idris and V. N. Biktashev. Analytical approach to initiation of propagating fronts. Phys. Rev. Lett., 101 (24): 244101, Dec 2008.

    Google Scholar 

  • N. Ishimura. On steady solutions of the Kuramoto-Sivashinsky equation. In R. Salvi, editor, The Navier-Stokes Equations: Theory and Numerical Methods, pages 45–52. Marcel Dekker, 2001.

    Google Scholar 

  • J. P. Keener. Analog circuitry for the van der Pol and FitzHugh-Nagumo equations. IEEE Trans Syst Man Cybern, SMC-13: 1010–1014, 1983.

    Article  MathSciNet  Google Scholar 

  • B. Krauskopf, H. M. Osinga, and Jorge G.-V. Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems. Springer, 2007.

    Google Scholar 

  • K. K. Lee. Lectures on Dynamical Systems, Structural Stability and their Applications. World Scientific, Singapore, 1992.

    Book  Google Scholar 

  • H. Leipholz. Stability Theory. Teubner, 2nd edition, 1987.

    Google Scholar 

  • J. Lewis, J. M. W. Slack, and L. Wolpert. Thresholds in development. J Theor Biol, 65: 579–590, 1977.

    Article  Google Scholar 

  • A. D. MacGillivray. Justification of matching with the transition expansion of van der Pol’s equation. SIAM J Math Anal, 21: 221–240, 1990.

    Article  MathSciNet  Google Scholar 

  • G. M. Maggio, O. de Feo, and M. P. Kennedy. A general method to predict the amplitude of oscillation in nearly-sinusoidal oscillators. IEEE Trans Circuits Syst, 51: 1586–1595, 2004.

    Article  MathSciNet  Google Scholar 

  • N. Minorsky. Introduction to Non-linear Mechanics: Topological Methods, Analytical Methods, Non-linear Resonance, Relaxation Oscillations. Edwards, Ann Arbor, MI, 1947.

    Google Scholar 

  • T. Mitani. Stable solution of nonlinear flame shape equation. Combustion Sci Tech, 36: 235–247, 1984.

    Article  Google Scholar 

  • J. D. Murray. Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, Berlin, 3rd edition, 2003.

    Book  Google Scholar 

  • D. J. Ness. Small oscillations of a stabilized, inverted pendulum. Am J Phys, 35: 964–967, 1967.

    Article  Google Scholar 

  • J. Pantaleone. Synchronization of metronomes. Am J Phys, 70 (10): 992–1000, 2002.

    Article  Google Scholar 

  • A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization: A Universal Concept in Nonlinear Science. Cambridge University Press, Cambridge, 2001.

    Book  Google Scholar 

  • J. W. S. Rayleigh. On maintained vibrations. Philos Mag xv, pages 229–235, 1883.

    Google Scholar 

  • F. Schlogl. Chemical reaction models for non-equilibrium phase transitions. Z Phys, 253: 147, 1972.

    Article  Google Scholar 

  • E. E. Sel’kov. Self-oscillations in glycolysis. Eur J Biochem, 4 (1): 79–86, 1968.

    Article  Google Scholar 

  • R. Seydel. Practical Bifurcation and Stability Analysis. Springer, Berlin, 3rd edition, 2010.

    Book  Google Scholar 

  • S. H. Strogatz. Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering. Westview, New York, 2001.

    MATH  Google Scholar 

  • B. van der Pol. On relaxation oscillations. Philos Mag, 2: 978–992, 1926.

    Article  Google Scholar 

  • M. Wazewska-Czyzewska and A. Lasota. Mathematical problems of the dynamics of a system of red blood cells. Math Stos, Seria III, 6: 23–40, 1976.

    MathSciNet  Google Scholar 

  • S. Woinowsky-Krieger. The effect of an axial force on the vibration of hinged bars. J. Appl. Mech., 17: 35–36, March 1950.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H. Holmes .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holmes, M.H. (2013). Introduction to Bifurcation and Stability. In: Introduction to Perturbation Methods. Texts in Applied Mathematics, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5477-9_6

Download citation

Publish with us

Policies and ethics