Skip to main content

Bisphosphonates, Denosumab, and Anabolic Agents in the Treatment of Metastatic Bone Disease

  • Chapter
Metastatic Bone Disease

Abstract

Cancer uses local factors to activate the ever-present osteoclasts in bone to prepare a cavity into which it may grow. For this reason, medical treatments have targeted the recruitment of osteoclasts to decrease metastasis. At the moment two major classes of drugs are utilized for this purpose: the bisphosphonates and the more-recent arrival denosumab. This chapter summarizes the mechanisms of action and modes of use in metastatic bone treatment of these drugs, along with their side effects and how these may be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell RG. Bisphosphonates: the first 40 years. Bone. 2011;49(1):2–19.

    Article  CAS  PubMed  Google Scholar 

  2. Cremers S, Papapoulos S. Pharmacology of bisphosphonates. Bone. 2011;49(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  3. Ebetino FH, et al. The relationship between the chemistry and biological activity of the bisphosphonates. Bone. 2011;49(1):20–33.

    Article  CAS  PubMed  Google Scholar 

  4. Russell RG, et al. Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann N Y Acad Sci. 2007;1117:209–57.

    Article  CAS  PubMed  Google Scholar 

  5. McClung MR, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med. 2006;354(8):821–31.

    Article  CAS  PubMed  Google Scholar 

  6. Plotkin LI, Manolagas SC, Bellido T. Dissociation of the pro-apoptotic effects of bisphosphonates on osteoclasts from their anti-apoptotic effects on osteoblasts/osteocytes with novel analogs. Bone. 2006;39(3):443–52.

    Article  CAS  PubMed  Google Scholar 

  7. Hanley DA, et al. Denosumab: mechanism of action and clinical outcomes. Int J Clin Pract. 2012;66(12):1139–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Machado M, et al. Efficacy of clodronate, pamidronate, and zoledronate in reducing morbidity and mortality in cancer patients with bone metastasis: a meta-analysis of randomized clinical trials. Clin Ther. 2009;31(5):962–79.

    Article  CAS  PubMed  Google Scholar 

  9. Young RJ, Coleman RE. Zoledronic acid to prevent and treat cancer metastasis: new prospects for an old drug. Future Oncol. 2013;9(5):633–43.

    Article  CAS  PubMed  Google Scholar 

  10. Mhaskar R, et al. Bisphosphonates in multiple myeloma: a network meta-analysis. Cochrane Database Syst Rev. 2012;5:CD003188.

    PubMed  Google Scholar 

  11. Mahindra A, Pozzi S, Raje N. Clinical trials of bisphosphonates in multiple myeloma. Clin Adv Hematol Oncol. 2012;10(9):582–7.

    PubMed  Google Scholar 

  12. Palmieri C, Fullarton JR, Brown J. Comparative efficacy of bisphosphonates in metastatic breast and prostate cancer and multiple myeloma: a mixed-treatment meta-analysis. Clin Cancer Res. 2013;19(24):6863–72.

    Article  CAS  PubMed  Google Scholar 

  13. Major P, et al. Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, controlled clinical trials. J Clin Oncol. 2001;19(2):558–67.

    CAS  PubMed  Google Scholar 

  14. Ringe JD, Body JJ. A review of bone pain relief with ibandronate and other bisphosphonates in disorders of increased bone turnover. Clin Exp Rheumatol. 2007;25(5):766–74.

    CAS  PubMed  Google Scholar 

  15. Ross JR, et al. Systematic review of role of bisphosphonates on skeletal morbidity in metastatic cancer. BMJ. 2003;327(7413):469.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Brown JP, et al. Effects of up to 5 years of denosumab treatment on bone histology and histomorphometry: the FREEDOM study extension. J Bone Miner Res. 2014;29(9):2051–6.

    Article  CAS  PubMed  Google Scholar 

  17. Keaveny TM, et al. Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab. J Bone Miner Res. 2014;29(1):158–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Genant HK, et al. Denosumab improves density and strength parameters as measured by QCT of the radius in postmenopausal women with low bone mineral density. Bone. 2010;47(1):131–9.

    Article  CAS  PubMed  Google Scholar 

  19. Reagan P, Pani A, Rosner MH. Approach to diagnosis and treatment of hypercalcemia in a patient with malignancy. Am J Kidney Dis. 2014;63(1):141–7.

    Article  PubMed  Google Scholar 

  20. Fizazi K, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377(9768):813–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Henry DH, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29(9):1125–32.

    Article  CAS  PubMed  Google Scholar 

  22. Henry D, et al. Delaying skeletal-related events in a randomized phase 3 study of denosumab versus zoledronic acid in patients with advanced cancer: an analysis of data from patients with solid tumors. Support Care Cancer. 2014;22(3):679–87.

    Article  PubMed  Google Scholar 

  23. Tang SY, Zeenath U, Vashishth D. Effects of non-enzymatic glycation on cancellous bone fragility. Bone. 2007;40(4):1144–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Paget S. Steroids cause osteoporosis. Ann Rheum Dis. 2002;61(1):1–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Perrot S, Le Jeunne C. Steroid-induced osteoporosis. Presse Med. 2012;41(4):406–13.

    Article  PubMed  Google Scholar 

  26. Manolagas SC. Steroids and osteoporosis: the quest for mechanisms. J Clin Invest. 2013;123(5):1919–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Bamias A, et al. Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factors. J Clin Oncol. 2005;23(34):8580–7.

    Article  PubMed  Google Scholar 

  28. Bi Y, et al. Bisphosphonates cause osteonecrosis of the jaw-like disease in mice. Am J Pathol. 2010;177(1):280–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Qi WX, et al. Risk of osteonecrosis of the jaw in cancer patients receiving denosumab: a meta-analysis of seven randomized controlled trials. Int J Clin Oncol. 2014;19(2):403–10.

    Article  CAS  PubMed  Google Scholar 

  30. Shane E, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American society for bone and mineral research. J Bone Miner Res. 2014;29(1):1–23.

    Article  PubMed  Google Scholar 

  31. Puhaindran ME, et al. Atypical subtrochanteric femoral fractures in patients with skeletal malignant involvement treated with intravenous bisphosphonates. J Bone Joint Surg Am. 2011;93(13):1235–42.

    Article  PubMed  Google Scholar 

  32. Chang ST, et al. Atypical femur fractures among breast cancer and multiple myeloma patients receiving intravenous bisphosphonate therapy. Bone. 2012;51(3):524–7.

    Article  CAS  PubMed  Google Scholar 

  33. Drampalos E, et al. Atypical femoral fractures bilaterally in a patient receiving denosumab. Acta Orthop. 2014;85(1):3–5.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Schilcher J, Aspenberg P. Atypical fracture of the femur in a patient using denosumab—a case report. Acta Orthop. 2014;85(1):6–7.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Thompson RN, Armstrong CL, Heyburn G. Bilateral atypical femoral fractures in a patient prescribed denosumab - a case report. Bone. 2014;61:44–7.

    Article  PubMed  Google Scholar 

  36. Bobyn JD, et al. Locally delivered bisphosphonate for enhancement of bone formation and implant fixation. J Bone Joint Surg Am. 2009;91 Suppl 6:23–31.

    Article  PubMed  Google Scholar 

  37. Tanzer M, et al. The Otto Aufranc Award: bone augmentation around and within porous implants by local bisphosphonate elution. Clin Orthop Relat Res. 2005;441:30–9.

    Article  PubMed  Google Scholar 

  38. Bobyn JD, et al. Local alendronic acid elution increases net periimplant bone formation: a micro-CT analysis. Clin Orthop Relat Res. 2014;472(2):687–94.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Healey JH, et al. PMMA to stabilize bone and deliver antineoplastic and antiresorptive agents. Clin Orthop Relat Res. 2003;(Suppl 415):S263–75.

    Google Scholar 

  40. Pfeilschifter J, Diel IJ. Osteoporosis due to cancer treatment: pathogenesis and management. J Clin Oncol. 2000;18(7):1570–93.

    CAS  PubMed  Google Scholar 

  41. Bruning PF, et al. Bone mineral density after adjuvant chemotherapy for premenopausal breast cancer. Br J Cancer. 1990;61(2):308–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Healey JH. Metabolic bone disease: editorial overview – the epidemic of chemotherapy-related osteoporosis. Curr Opin Orthop. 1999;10(5):331–3.

    Article  Google Scholar 

  43. Milgrom C, et al. The effect of prophylactic treatment with risedronate on stress fracture incidence among infantry recruits. Bone. 2004;35(2):418–24.

    Article  CAS  PubMed  Google Scholar 

  44. Savaridas T, et al. Do bisphosphonates inhibit direct fracture healing? A laboratory investigation using an animal model. Bone Joint J. 2013;95-B(9):1263–8.

    Article  CAS  PubMed  Google Scholar 

  45. Rebolledo BJ, Unnanuntana A, Lane JM. A comprehensive approach to fragility fractures. J Orthop Trauma. 2011;25(9):566–73.

    Article  PubMed  Google Scholar 

  46. McClung M, et al. Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday. Am J Med. 2013;126(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  47. Kong SY, et al. Effects of a “drug holiday” on bone mineral density and bone turnover marker during bisphosphonate therapy. J Bone Metab. 2013;20(1):31–5.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Brown JP, et al. Bisphosphonates for treatment of osteoporosis: expected benefits, potential harms, and drug holidays. Can Fam Physician. 2014;60(4):324–33.

    PubMed Central  PubMed  Google Scholar 

  49. Black DM, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the fracture intervention trial long-term extension (FLEX): a randomized trial. JAMA. 2006;296(24):2927–38.

    Article  CAS  PubMed  Google Scholar 

  50. Nishida S, et al. Increased bone formation by intermittent parathyroid hormone administration is due to the stimulation of proliferation and differentiation of osteoprogenitor cells in bone marrow. Bone. 1994;15(6):717–23.

    Article  CAS  PubMed  Google Scholar 

  51. Compston JE. Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure. Bone. 2007;40(6):1447–52.

    Article  CAS  PubMed  Google Scholar 

  52. Aspenberg P, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res. 2010;25(2):404–14.

    Article  CAS  PubMed  Google Scholar 

  53. Ohtori S, et al. Teriparatide accelerates lumbar posterolateral fusion in women with postmenopausal osteoporosis: prospective study. Spine (Phila Pa 1976). 2012;37(23):E1464–8.

    Article  Google Scholar 

  54. Ohtori S, et al. Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine (Phila Pa 1976). 2013;38(8):E487–92.

    Article  Google Scholar 

  55. Peichl P, et al. Parathyroid hormone 1-84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. J Bone Joint Surg Am. 2011;93(17):1583–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Lane MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Olgun, Z.D., Gianakos, A., Jo, J.E., Lane, J.M. (2016). Bisphosphonates, Denosumab, and Anabolic Agents in the Treatment of Metastatic Bone Disease. In: Randall, R. (eds) Metastatic Bone Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5662-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5662-9_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5661-2

  • Online ISBN: 978-1-4614-5662-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics