Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 996 Accesses

Abstract

Apart from the more distributional solid state photovoltaic devices, including silicon III-V, polymer, CIGS and CZTS, another type of solar cell based on solutions such as dye-sensitized solar cells has attracted many groups in the past 10 years, and also proved to perform at levels higher than 10% [1]. Some optical confinement geometries with tubes or other cavities connecting with fibers could work well by combining solid-based cells and solution-based materials together, which is known as a hybrid optical confinement geometry solar cell. Furthermore, by means of the feature of applicability working at very high light intensity, a fiber based hybrid solar power system combining photovoltaic and thermoelectricity is designed to reach a very high efficiency over 50%. Yet, this technology is able to be applied to most of photovoltaic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 37). Prog. Photovoltaics 19, 84–92 (2011)

    Article  Google Scholar 

  2. H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E.D. Peterson, J. Liu, G. Fang, D.L. Carroll, Photovoltaic-thermal solar energy collectors based on optical tubes. Sol. Energ. 85, 450–454 (2011)

    Google Scholar 

  3. H.P. Garg, R.K. Agarwal, J.C. Joshi, Experimental-study on a hybrid photovoltaic thermal solar water-heater and its performance predictions. Energ, Convers. Manage. 35, 621–633 (1994)

    Article  Google Scholar 

  4. P.A. Davies, A. Luque, Solar thermophotovoltaics: brief review and a new look. Sol. Energ. Mat. Sol. C. 33, 11–22 (1994)

    Article  Google Scholar 

  5. P.G. Charalambous, G.G. Maidment, S.A. Kalogirou, K. Yiakoumetti, Photovoltaic thermal (PV/T) collectors: A review. Appl. Therm. Eng. 27, 275–286 (2007)

    Article  Google Scholar 

  6. T.T. Chow, A review on photovoltaic/thermal hybrid solar technology. Appl. Energ. 87, 365–379 (2010)

    Article  Google Scholar 

  7. S. Kumar, A. Tiwari, An experimental study of hybrid photovoltaic thermal (PV/T)-active solar still. Int. J. Energ. Res. 32, 847–858 (2008)

    Article  Google Scholar 

  8. B. Singh, M.Y. Othman, A review on photovoltaic thermal collectors. J. Renew. Sust. Energ. 1, 062702 (2009)

    Article  Google Scholar 

  9. J.W. Liu, M.A.G. Namboothiry, D.L. Carroll, Optical geometries for fiber-based organic photovoltaics. Appl. Phys. Lett. 90, 133515 (2007)

    Article  ADS  Google Scholar 

  10. Y. Li, E.D. Peterson, H.H. Huang, M.J. Wang, D. Xue, W.Y. Nie, W. Zhou, D.L. Carroll, Tube-based geometries for organic photovoltaics. Appl. Phys. Lett. 96, 243505 (2010)

    Article  ADS  Google Scholar 

  11. Y. Li, W. Nie, J. Liu, A. Partridge, D.L. Carroll, The optics of organic photovoltaics: Fiber-based devices. IEEE J. Sel. Top. Quant. Electron. 16(6), 1–11 (2010)

    Google Scholar 

  12. N.S. Lewis, Toward cost-effective solar energy use. Science 315, 798–801 (2007)

    Article  ADS  Google Scholar 

  13. F.C. Krebs, Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energ. Mat. Sol. C. 93, 394–412 (2009)

    Article  Google Scholar 

  14. F.C. Krebs, S.A. Gevorgyan, J. Alstrup, A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J. Mater. Chem. 19, 5442–5451 (2009)

    Article  Google Scholar 

  15. F.C. Krebs, T.D. Nielsen, J. Fyenbo, M. Wadstrom, M.S. Pedersen, Manufacture, integration and demonstration of polymer solar cells in a lamp for the “Lighting Africa” initiative. Energ. Environ. Sci. 3, 512–525 (2010)

    Article  Google Scholar 

  16. F.C. Krebs, T. Tromholt, M. Jorgensen, Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2, 873–886 (2010)

    Article  ADS  Google Scholar 

  17. K. Kim, J. Liu, M.A.G. Namboothiry, D.L. Carroll, Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Appl. Phys. Lett. 90, 163511 (2007)

    Article  ADS  Google Scholar 

  18. Y. Li, W. Zhou, D. Xue, J.W. Liu, E.D. Peterson, W.Y. Nie, D.L. Carroll, Origins of performance in fiber-based organic photovoltaics. Appl. Phys. Lett. 95, 203503 (2009)

    Article  ADS  Google Scholar 

  19. L.A.A. Pettersson, L.S. Roman, O. Inganas, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86, 487–496 (1999)

    Article  ADS  Google Scholar 

  20. D.W. Sievers, V. Shrotriya, Y. Yang, Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. J. Appl. Phys. 100, 114509 (2006)

    Article  ADS  Google Scholar 

  21. Open Photovoltaics Analysis Platform (OPVAP) by Yuan Li, USA www.OPVAP.com

  22. M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells. Sol. Energ. Mat. Sol. C. 92, 686–714 (2008)

    Article  Google Scholar 

  23. H.Y. Chen, J.H. Hou, S.Q. Zhang, Y.Y. Liang, G.W. Yang, Y. Yang, L.P. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics 3, 649–653 (2009)

    Article  ADS  Google Scholar 

  24. R.C. Coffin, J. Peet, J. Rogers, G.C. Bazan, Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nat. Chem. 1, 657–661 (2009)

    Article  Google Scholar 

  25. X. Gong, M.H. Tong, Y.J. Xia, W.Z. Cai, J.S. Moon, Y. Cao, G. Yu, C.L. Shieh, B. Nilsson, A.J. Heeger, High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325, 1665–1667 (2009)

    Article  ADS  Google Scholar 

  26. L.J. Huo, J.H. Hou, H.Y. Chen, S.Q. Zhang, Y. Jiang, T.L. Chen, Y. Yang, Bandgap and molecular level control of the low-bandgap polymers based on 3,6-dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione toward highly efficient polymer solar cells. Macromolecules 42, 6564–6571 (2009)

    Article  ADS  Google Scholar 

  27. S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 3, 297–U295 (2009)

    Article  ADS  Google Scholar 

  28. Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H. Imai, Characteristics of high efficiency dye-sensitized solar cells. J. Phys. Chem. B 110, 25210–25221 (2006)

    Article  Google Scholar 

  29. K. Uzaki, T. Nishimura, J. Usagawa, S. Hayase, M. Kono, Y. Yamaguchi, Dye-sensitized solar cells consisting of 3D-electrodes—a review: Aiming at high efficiency from the view point of light harvesting and charge collection. J, Sol. Energ. Eng. 132, 021204 (2010)

    Article  Google Scholar 

  30. K. Uzaki, S.S. Pandey, Y. Ogimi, S. Hayase, Tandem dye-sensitized solar cells consisting of nanoporous titania sheet. Jpn. J. Appl. Phys. 49, 082301 (2010)

    Article  ADS  Google Scholar 

  31. S. Ito, S.M. Zakeeruddin, P. Comte, P. Liska, D. Kuang, M. Grätzel, Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte. Nat. Photonics 2, 693–698 (2008)

    Article  ADS  Google Scholar 

  32. Y. Wang, Y. Liu, H. Yang, H. Wang, H. Shen, M. Li, J. Yan, An investigation of DNA-like structured dye-sensitized solar cells. Curr. Appl. Phys. 10, 119–123 (2010)

    Article  ADS  Google Scholar 

  33. Y. Wang, H. Yang, L. Lu, Three-dimensional double deck meshlike dye-sensitized solar cells. J. Appl. Phys. 108, 064510 (2010)

    Article  ADS  Google Scholar 

  34. J. Usagawa, S.S. Pandey, S. Hayase, M. Kono, Y. Yamaguchi, Tandem dye-sensitized solar cells fabricated on glass rod without transparent conductive layers. Appl. Phys. Express 2, 062203 (2009)

    Article  ADS  Google Scholar 

  35. Z. Tachan, S. Rühle, A. Zaban, Dye-sensitized solar tubes: A new solar cell design for efficient current collection and improved cell sealing. Sol. Energ. Mat. Sol. C. 94, 317–322 (2010)

    Article  Google Scholar 

  36. M. Toivola, M. Ferenets, P. Lund, A. Harlin, Photovoltaic fiber. Thin Solid Films 517, 2799–2802 (2009)

    Article  ADS  Google Scholar 

  37. J.W. Liu, M.A.G. Namboothiry, D.L. Carroll, Fiber-based architectures for organic photovoltaics. Appl. Phys. Lett. 90, 063501 (2007)

    Article  ADS  Google Scholar 

  38. Y. Li, W. Zhou, D. Xue, J. Liu, E.D. Peterson, W. Nie, D.L. Carroll, Origins of performance in fiber-based organic photovoltaics. Appl. Phys. Lett. 95, 203503 (2009)

    Article  ADS  Google Scholar 

  39. Y. Li, E.D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, D.L. Carroll, Tube-based geometries for organic photovoltaics. Appl. Phys. Lett. 96, 243505 (2010)

    Article  ADS  Google Scholar 

  40. Y. Liu, X. Sun, Q. Tai, H. Hu, B. Chen, N. Huang, B. Sebo, X.Z. Zhao, Efficiency enhancement in dye-sensitized solar cells by interfacial modification of conducting glass/mesoporous TiO2 using a novel ZnO compact blocking film. J. Power. Sources 196, 475–481 (2011)

    Article  Google Scholar 

  41. X. Fan, Z.Z. Chu, F.Z. Wang, C. Zhang, L. Chen, Y.W. Tang, D.C. Zou, Wire-shaped flexible dye-sensitized solar cells. Adv. Mater. 20, 592–595 (2008)

    Article  Google Scholar 

  42. S.R. Cowan, A. Roy, A.J. Heeger, Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B. 82, 245207 (2010)

    Article  ADS  Google Scholar 

  43. Y. Li, M. Wang, H. Huang, W. Nie, Q. Li, E.D. Peterson, R. Coffin, G. Fang, D.L. Carroll, Influence on open-circuit voltage by optical heterogeneity in three-dimensional organic photovoltaics. Phys. Rev. B. 84, 085206 (2011)

    Article  ADS  Google Scholar 

  44. F. Liu, J.M. Nunzi, Air stable hybrid inverted tandem solar cell design. Appl. Phys. Lett. 99, 063301 (2011)

    Article  ADS  Google Scholar 

  45. D.W. Zhao, L. Ke, Y. Li, S.T. Tan, A.K.K. Kyaw, H.V. Demir, X.W. Sun, D.L. Carroll, G.Q. Lo, D.L. Kwong, Optimization of inverted tandem organic solar cells. Sol. Energ. Mat. Sol. C. (2010 in press, Corrected Proof)

    Google Scholar 

  46. S. Sista, M.-H. Park, Z. Hong, Y. Wu, J. Hou, W.L. Kwan, G. Li, Y. Yang, Highly efficient tandem polymer photovoltaic cells. Adv. Mater. 22, 380–383 (2010)

    Article  Google Scholar 

  47. X.W. Sun, D.W. Zhao, C.Y. Jiang, A.K.K. Kyaw, G.Q. Lo, D.L. Kwong, Efficient tandem organic solar cells with an Al/MoO(3) intermediate layer. Appl. Phys. Lett. 93, 083305 (2008)

    Article  ADS  Google Scholar 

  48. K. Lee, J.Y. Kim, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007)

    Article  ADS  Google Scholar 

  49. J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007)

    Article  ADS  Google Scholar 

  50. H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E.D. Peterson, J. Liu, G. Fang, D.L. Carroll, Photovoltaic-thermal solar energy collectors based on optical tubes. Sol. Energ. 85, 450–454 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, Y. (2013). Hybrid Optical Confinement Geometry Device. In: Three Dimensional Solar Cells Based on Optical Confinement Geometries. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5699-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5699-5_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5698-8

  • Online ISBN: 978-1-4614-5699-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics