Skip to main content

Infectious Diseases, Vibrational Spectroscopic Approaches to Rapid Diagnostics

  • Chapter
  • First Online:
Infectious Diseases
  • 2628 Accesses

Abstract

Infectious diseases are a major burden on human health with the World Health Organization (WHO) reporting that infectious diseases are responsible for one in ten deaths in the world’s richest nations. The impact of infectious diseases is even greater in poorer regions of the world where six of every ten deaths are caused by a spectrum of infectious diseases that include bacteria, viruses, parasites and fungi. These infectious agents can further be described as classical pathogens, e.g., tuberculosis and malaria, seasonal epidemics, e.g., influenza and rhinoviruses, emerging infectious disease, e.g., highly pathogenic avian influenza and hemorrhagic fevers, or global pandemics such as the most recent outbreak of novel H1N1 influenza virus. Central to the management of each of these diseases are diagnostics. Early and rapid detection of an infectious agent is not only imperative to prevent the spread of disease, but it is also an essential first step to identify appropriate therapeutics that target the disease, as well as to overcome inappropriate administration of ineffective drugs that may drastically lead to drug-resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA). This is just a succinct example which highlights the importance of diagnostic testing; however, the sections that follow discuss the current status of diagnostics and introduce an emerging approach to diagnostics based on vibrational spectroscopy which has tremendous potential to significantly advance the field.

This chapter, which has been modified slightly for the purposes of this volume, was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Chemometrics:

A term to describe the use of multivariate statistics used to extract chemical information.

Fourier-transform infrared spectroscopy (FTIR):

A specific technique for acquiring IR absorption spectra in which all wavelengths are simultaneously measured.

Infrared spectroscopy:

An absorption-based vibrational spectroscopic technique which primarily probes non-polar bonds.

Polymerase chain reaction (PCR):

An enzymatic method for amplifying a specific nucleic acid sequence.

Raman spectroscopy:

A scattering vibrational spectroscopic technique which primarily probes polar bonds.

Surface-enhanced Raman spectroscopy (SERS):

A technique used to amplify Raman scattered signal via adsorption to a nanometer-scale metallic surface.

Vibrational (molecular) spectroscopy:

A general term for the use of light to probe vibrations in a sample as a means of determining chemical composition and structure.

Bibliography

Primary Literature

  1. Perry JD, Ford M, Taylor J, Jones AL, Freeman R et al (1999) ABC medium, a new chromogenic agar for selective isolation of Salmonella spp. J Clin Microbiol 37:766–768

    PubMed  CAS  Google Scholar 

  2. Hedin G, Fang H (2005) Evaluation of two new chromogenic media, CHROMagar MRSA and S. aureus ID, for identifying Staphylococcus aureus and screening methicillin-resistant S-aureus. J Clin Microbiol 43:4242–4244

    Article  PubMed  CAS  Google Scholar 

  3. Perry JD, Davies A, Butterworth LA, Hopley ALJ, Nicholson A et al (2004) Development and evaluation of a chromogenic agar medium for methicillin-resistant Staphylococcus aureus. J Clin Microbiol 42:4519–4523

    Article  PubMed  CAS  Google Scholar 

  4. Nygren H, Stenberg M (1985) Kinetics of antibody-binding to surface-immobilized antigen – influence of mass-transport on the enzyme-linked immunosorbent-assay (ELISA). J Colloid Interface Sci 107:560–566

    Article  CAS  Google Scholar 

  5. Nygren H, Werthen M, Stenberg M (1987) Kinetics of antibody-binding to solid-phase-immobilized antigen – effect of diffusion rate limitation and steric interaction. J Immunol Methods 101:63–71

    Article  PubMed  CAS  Google Scholar 

  6. Gussenhoven GC, vanderHoorn M, Goris MGA, Terpstra WJ, Hartskeerl RA et al (1997) LEPTO dipstick, a dipstick assay for detection of Leptospira-specific immunoglobulin M antibodies in human sera. J Clin Microbiol 35:92–97

    PubMed  CAS  Google Scholar 

  7. Gordon A, Videa E, Saborio S, Lopez R, Kuan G et al (2010) Diagnostic accuracy of a rapid influenza test for pandemic influenza A H1N1. Plos One 5:e10364

    Article  PubMed  Google Scholar 

  8. Erdman DD, Weinberg GA, Edwards KM, Walker FJ, Anderson BC et al (2003) GeneScan reverse transcription-PCR assay for detection of six common respiratory viruses in young children hospitalized with acute respiratory illness. J Clin Microbiol 41:4298–4303

    Article  PubMed  CAS  Google Scholar 

  9. Lassauniere R, Kresfelder T, Venter M (2010) A novel multiplex real-time RT-PCR assay with FRET hybridization probes for the detection and quantitation of 13 respiratory viruses. J Virol Methods 165:254–260

    Article  PubMed  CAS  Google Scholar 

  10. Li H, McCormac MA, Estes RW, Sefers SE, Dare RK et al (2007) Simultaneous detection and high-throughput identification of a panel of RNA viruses causing respiratory tract infections. J Clin Microbiol 45:2105–2109

    Article  PubMed  CAS  Google Scholar 

  11. Abu al-Soud W, Radstrom P (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39:485–493

    Article  Google Scholar 

  12. Abu Al-Soud W, Radstrom P (2001) Effects of amplification facilitators on diagnostic PCR in the presence of blood, feces, and meat. J Clin Microbiol 38:4463–4470

    Google Scholar 

  13. Widjojoatmodjo MN, Fluit AC, Torensma R, Verdonk G, Verhoef J (1992) The magnetic immunopolymerase chain-reaction assay for direct detection of salmonellae in fecal samples. J Clin Microbiol 30:3195–3199

    PubMed  CAS  Google Scholar 

  14. Chui LW, King R, Lu P, Manninen K, Sim J (2004) Evaluation of four DNA extraction methods for the detection of Mycobacterium avium subsp paratuberculosis by polymerase chain reaction. Diagn Microbiol Infect Dis 48:39–45

    Article  PubMed  CAS  Google Scholar 

  15. McOrist AL, Jackson M, Bird AR (2002) A comparison of five methods for extraction of bacterial DNA from human faecal samples. J Microbiol Methods 50:131–139

    Article  PubMed  CAS  Google Scholar 

  16. Kaigala GV, Hoang VN, Stickel A, Lauzon J, Manage D et al (2008) An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electrophoresis. Analyst 133:331–338

    Article  PubMed  CAS  Google Scholar 

  17. Zhang NY, Tan HD, Yeung ES (1999) Automated and integrated system for high-throughput DNA genotyping directly from blood. Anal Chem 71:1138–1145

    Article  PubMed  CAS  Google Scholar 

  18. Aryan E, Makvandi M, Farajzadeh A, Huygen K, Bifani P et al (2010) A novel and more sensitive loop-mediated isothermal amplification assay targeting IS6110 for detection of Mycobacterium tuberculosis complex. Microbiol Res 165:211–220

    Article  PubMed  CAS  Google Scholar 

  19. Fang XE, Liu YY, Kong JL, Jiang XY (2010) Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal Chem 82:3002–3006

    Article  PubMed  CAS  Google Scholar 

  20. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K et al (2000) Loop-mediated isothermal amplification of DNA. Nucl Acids Res 28:e63

    Article  PubMed  CAS  Google Scholar 

  21. Shivakoti S, Ito H, Murase T, Ono E, Takakuwa H et al (2010) Development of reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for detection of avian influenza viruses in field specimens. J Vet Med Sci 72:519–523

    Article  PubMed  Google Scholar 

  22. Stevenson HJR, Bolduan OEA (1952) Infrared spectrophotometry as a means for identification of bacteria. Science 116:111–113

    Article  PubMed  CAS  Google Scholar 

  23. Lin MS, Al-Holy M, Al-Qadiri H, Kang DH, Cavinato AG et al (2004) Discrimination of intact and injured Listeria monocytogenes by Fourier transform infrared spectroscopy and principal component analysis. J Agric Food Chem 52:5769–5772

    Article  PubMed  CAS  Google Scholar 

  24. Ngo-Thi NA, Kirschner C, Naumann D (2003) Characterization and identification of microorganisms by FIF-IR microspectrometry. J Mole Struct 661:371–380

    Article  Google Scholar 

  25. Janbu AO, Moretro T, Bertrand D, Kohler A (2008) FT-IR microspectroscopy: a promising method for the rapid identification of Listeria species. FEMS Microbiol Lett 278:164–170

    Article  PubMed  CAS  Google Scholar 

  26. Bosch A, Minan A, Vescina C, Degrossi J, Gatti B et al (2008) Fourier transform infrared spectroscopy for rapid identification of nonfermenting gram-negative bacteria isolated from sputum samples from cystic fibrosis patients. J Clin Microbiol 46:2535–2546

    Article  PubMed  CAS  Google Scholar 

  27. Rebuffo-Scheer CA, Schmitt J, Scherer S (2007) Differentiation of Listeria monocytogenes serovars by using artificial neural network analysis of Fourier-transformed infrared spectra. Appl Environ Microbiol 73:1036–1040

    Article  PubMed  CAS  Google Scholar 

  28. Bouhedja W, Sockalingum GD, Pina P, Allouch P, Bloy C et al (1997) ATR-FTIR spectroscopic investigation of E coli transconjugants beta-lactams-resistance phenotype. FEBS Lett 412:39–42

    Article  PubMed  CAS  Google Scholar 

  29. Goodacre R, Timmins EM, Rooney PJ, Rowland JJ, Kell DB (1996) Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks. FEMS Microbiol Lett 140:233–239

    Article  PubMed  CAS  Google Scholar 

  30. Helm D, Labischinski H, Naumann D (1991) Elaboration of a procedure for identification of bacteria using Fourier-transform IR spectral libraries – a stepwise correlation approach. J Microbiol Methods 14:127–142

    Article  Google Scholar 

  31. Helm D, Labischinski H, Schallehn G, Naumann D (1991) Classification of bacteria by Fourier-transform infrared-spectroscopy. J Gen Microbiol 137:69–79

    Article  PubMed  CAS  Google Scholar 

  32. Naumann D, Fijala V, Labischinski H, Giesbrecht P (1988) The rapid differentiation and identification of pathogenic bacteria using Fourier-transform infrared spectroscopic and multivariate statistical-analysis. J Mole Struct 174:165–170

    Article  Google Scholar 

  33. Naumann D, Helm D, Labischinski H (1991) Microbiological characterizations by FT-IR spectroscopy. Nature 351:81–82

    Article  PubMed  CAS  Google Scholar 

  34. Ferroni A, Sermet-Gaudelus I, Abachin E, Quesne G, Lenoir G et al (2002) Use of 16 S rRNA gene sequencing for identification of nonfermenting gram-negative bacilli recovered from patients attending a single cystic fibrosis center. J Clin Microbiol 40:3793–3797

    Article  PubMed  CAS  Google Scholar 

  35. Miller MB, Gilligan PH (2003) Laboratory aspects of management of chronic pulmonary infections in patients with cystic fibrosis. J Clin Microbiol 41:4009–4015

    Article  PubMed  Google Scholar 

  36. Fischer G, Braun S, Thissen R, Dott W (2006) FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi. J Microbiol Methods 64:63–77

    Article  PubMed  CAS  Google Scholar 

  37. Sandt C, Sockalingum GD, Aubert D, Lepan H, Lepouse C et al (2003) Use of Fourier-transform infrared spectroscopy for typing of Candida albicans strains isolated in intensive care units. J Clin Microbiol 41:954–959

    Article  PubMed  CAS  Google Scholar 

  38. Erukhimovitch V, Karpasasa M, Huleihel M (2009) Spectroscopic detection and identification of infected cells with Herpes viruses. Biopolymers 91:61–67

    Article  PubMed  CAS  Google Scholar 

  39. Erukhimovitch V, Mukmanov I, Talyshinsky M, Souprun Y, Huleihel M (2004) The use of FTIR microscopy for evaluation of herpes viruses infection development kinetics. Spectrochimica Acta Part A-Mole Biomol Spectrosc 60:2355–2361

    Article  Google Scholar 

  40. Hastings G, Krug P, Wang RL, Guo J, Lamichhane HP et al (2009) Viral infection of cells in culture detected using infrared microscopy. Analyst 134:1462–1471

    Article  PubMed  CAS  Google Scholar 

  41. Salman A, Erukhimovitch V, Talyshinsky M, Huleihil M, Huleihel M (2002) FTIR spectroscopic method for detection of cells infected with herpes viruses. Biopolymers 67:406–412

    Article  PubMed  CAS  Google Scholar 

  42. Hartman KA, Clayton N, Thomas GJ (1973) Studies of virus structure by Raman spectroscopy 1. R17 virus and R17 RNA. Biochem Biophys Res Commun 50:942–949

    Article  PubMed  CAS  Google Scholar 

  43. Dalterio RA, Baek M, Nelson WH, Britt D, Sperry JF et al (1987) The resonance Raman microprobe detection of single bacterial-cells from a chromobacterial mixture. Appl Spectrosc 41:241–244

    Article  Google Scholar 

  44. Chadha S, Manoharan R, Moenneloccoz P, Nelson WH, Peticolas WL et al (1993) Comparison of the UV resonance Raman-spectra of bacteria, bacteria-cell walls, and ribosomes excited in the deep UV. Appl Spectrosc 47:38–43

    Article  CAS  Google Scholar 

  45. Ghiamati E, Manoharan R, Nelson WH, Sperry JF (1992) UV resonance Raman-spectra of bacillus spores. Appl Spectrosc 46:357–364

    Article  CAS  Google Scholar 

  46. Manoharan R, Ghiamati E, Dalterio RA, Britton KA, Nelson WH et al (1990) UV resonance Raman-spectra of bacteria, bacterial-spores, protoplasts and calcium dipicolinate. J Microbiol Methods 11:1–15

    Article  CAS  Google Scholar 

  47. Edwards HGM, Russell NC, Weinstein R, Wynnwilliams DD (1995) Fourier-transform Raman-spectroscopic study of fungi. J Raman Spectrosc 26:911–916

    Article  CAS  Google Scholar 

  48. Williams AC, Edwards HGM (1994) Fourier-transform Raman-spectroscopy of bacterial-cell walls. J Raman Spectrosc 25:673–677

    Article  CAS  Google Scholar 

  49. Choo-Smith LP, Maquelin K, van Vreeswijk T, Bruining HA, Puppels GJ et al (2001) Investigating microbial (micro) colony heterogeneity by vibrational spectroscopy. Appl Environ Microbiol 67:1461–1469

    Article  PubMed  CAS  Google Scholar 

  50. Huang WE, Griffiths RI, Thompson IP, Bailey MJ, Whiteley AS (2004) Raman microscopic analysis of single microbial cells. Anal Chem 76:4452–4458

    Article  PubMed  CAS  Google Scholar 

  51. Jarvis RM, Brooker A, Goodacre R (2004) Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. Anal Chem 76:5198–5202

    Article  PubMed  CAS  Google Scholar 

  52. Kalasinsky KS, Hadfield T, Shea AA, Kalasinsky VF, Nelson MP et al (2007) Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation. Anal Chem 79:2658–2673

    Article  PubMed  CAS  Google Scholar 

  53. Maquelin K, Choo-Smith LP, Endtz HP, Bruining HA, Puppels GJ (2002) Rapid identification of Candida species by confocal Raman micro spectroscopy. J Clin Microbiol 40:594–600

    Article  PubMed  CAS  Google Scholar 

  54. Maquelin K, Choo-Smith LP, van Vreeswijk T, Endtz HP, Smith B et al (2000) Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium. Anal Chem 72:12–19

    Article  PubMed  CAS  Google Scholar 

  55. Maquelin K, Dijkshoorn L, van der Reijden TJK, Puppels GJ (2006) Rapid epidemiological analysis of Acinetobacter strains by Raman spectroscopy. J Microbiol Methods 64:126–131

    Article  PubMed  CAS  Google Scholar 

  56. Schaeberle MD, Morris HR, Turner JF, Treado PJ (1999) Raman chemical imaging spectroscopy. Anal Chem 71:175A–181A

    Article  PubMed  CAS  Google Scholar 

  57. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  58. Nie SM, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  PubMed  CAS  Google Scholar 

  59. Alexander TA (2008) Development of methodology based on commercialized SERS-active substrates for rapid discrimination of Poxviridae virions. Anal Chem 80:2817–2825

    Article  PubMed  CAS  Google Scholar 

  60. Alexander TA (2008) Surface-enhanced Raman spectroscopy: a new approach to rapid identification of intact viruses. Spectroscopy 23:36–42

    CAS  Google Scholar 

  61. Bao PD, Huang TQ, Liu XM, Wu TQ (2001) Surface-enhanced Raman spectroscopy of insect nuclear polyhedrosis virus. J Raman Spectrosc 32:227–230

    Article  CAS  Google Scholar 

  62. Driskell JD, Shanmukh S, Liu YJ, Hennigan S, Jones L et al (2008) Infectious agent detection with SERS-active silver nanorod arrays prepared by oblique angle deposition. IEEE Sens J 8:863–870

    Article  CAS  Google Scholar 

  63. Driskell JD, Zhu Y, Kirkwood CD, Zhao YP, Dluhy RA et al (2010) Rapid and sensitive detection of rotavirus molecular signatures using surface enhanced Raman spectroscopy. Plos One 5(4):e10222

    Article  PubMed  Google Scholar 

  64. Goeller LJ, Riley MR (2007) Discrimination of bacteria and bacteriophages by Raman spectroscopy and surface-enhanced Raman spectroscopy. Appl Spectrosc 61:679–685

    Article  PubMed  CAS  Google Scholar 

  65. Grow AE, Wood LL, Claycomb JL, Thompson PA (2003) New biochip technology for label-free detection of pathogens and their toxins. J Microbiol Methods 53:221–233

    Article  PubMed  CAS  Google Scholar 

  66. Guicheteau J, Christesen SD (2006) Principal component analysis of bacteria using surface-enhanced Raman spectroscopy. Proc SPIE 6218:62180G

    Article  Google Scholar 

  67. Jarvis RM, Brooker A, Goodacre R (2006) Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discuss 132:281–292

    Article  PubMed  CAS  Google Scholar 

  68. Jarvis RM, Goodacre R (2004) Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal Chem 76:40–47

    Article  PubMed  CAS  Google Scholar 

  69. Laucks ML, Sengupta A, Junge K, Davis EJ, Swanson BD (2005) Comparison of Psychro-active arctic marine Bacteria and common Mesophillic bacteria using surface-enhanced Raman spectroscopy. Appl Spectrosc 59:1222–1228

    Article  PubMed  CAS  Google Scholar 

  70. Patel IS, Premasiri WR, Moir DT, Ziegler LD (2008) Barcoding bacterial cells: a SERS-based methodology for pathogen identification. J Raman Spectrosc 39:1660–1672

    Article  PubMed  CAS  Google Scholar 

  71. Pearman WF, Fountain AW (2006) Classification of chemical and biological warfare agent simulants by surface-enhanced Raman spectroscopy and multivariate statistical techniques. Appl Spectrosc 60:356–365

    Article  PubMed  CAS  Google Scholar 

  72. Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G et al (2005) Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J Phys Chem B 109:312–320

    Article  PubMed  CAS  Google Scholar 

  73. Premasiri WR, Moir DT, Lawrence DZ (2005) Vibrational fingerprinting of bacterial pathogens by surface enhanced Raman scattering (SERS). Proc SPIE 5795:19–29

    Article  CAS  Google Scholar 

  74. Sengupta A, Laucks ML, Davis EJ (2005) Surface-enhanced Raman spectroscopy of bacteria and pollen. Appl Spectrosc 59:1016–1023

    Article  PubMed  CAS  Google Scholar 

  75. Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R et al (2006) Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett 6:2630–2636

    Article  PubMed  CAS  Google Scholar 

  76. Shanmukh S, Jones L, Zhao Y-P, Driskell JD, Tripp RA et al (2008) Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques. Anal Bioanal Chem 390:1551–1555

    Article  PubMed  CAS  Google Scholar 

  77. Yan F, Vo-Dinh T (2007) Surface-enhanced Raman scattering detection of chemical and biological agents using a portable Raman integrated tunable sensor. Sens Actuat B-Chem 121:61–66

    Article  Google Scholar 

  78. Zeiri L, Bronk BV, Shabtai Y, Czege J, Efrima S (2002) Silver metal induced surface enhanced Raman of bacteria. Colloids Surf A-Physicochem Eng Aspects 208:357–362

    Article  CAS  Google Scholar 

  79. Jarvis RM, Goodacre R (2008) Characterisation and identification of bacteria using SERS. Chem Soc Rev 37:931–936

    Article  PubMed  CAS  Google Scholar 

  80. DeJesus MA, Giesfeldt KS, Oran JM, Abu-Hatab NA, Lavrik NV et al (2005) Nanofabrication of densely packed metal-polymer arrays for surface-enhanced Raman spectrometry. Appl Spectrosc 59:1501–1508

    Article  CAS  Google Scholar 

  81. Kahl M, Voges E, Kostrewa S, Viets C, Hill W (1998) Periodically structured metallic substrates for SERS. Sens Actuat B-Chem 51:285–291

    Article  Google Scholar 

  82. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611

    Article  CAS  Google Scholar 

  83. Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR et al (1999) Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays. J Phys Chem B 103:3854–3863

    Article  CAS  Google Scholar 

  84. Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104:10549–10556

    Article  CAS  Google Scholar 

  85. Broglin BL, Andreu A, Dhussa N, Heath JA, Gerst J et al (2007) Investigation of the effects of the local environment on the surface-enhanced Raman spectra of striped gold/silver nanorod arrays. Langmuir 23:4563–4568

    Article  PubMed  CAS  Google Scholar 

  86. Lombardi I, Cavallotti PL, Carraro C, Maboudian R (2007) Template assisted deposition of Ag nanoparticle arrays for surface-enhanced Raman scattering applications. Sensor Actuat B-Chem 125:353–356

    Article  Google Scholar 

  87. Ruan CM, Eres G, Wang W, Zhang ZY, Gu BH (2007) Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy. Langmuir 23:5757–5760

    Article  PubMed  CAS  Google Scholar 

  88. Yao JL, Pan GP, Xue KH, Wu DY, Ren B et al (2000) A complementary study of surface-enhanced Raman scattering and metal nanorod arrays. Pure Appl Chem 72:221–228

    Article  CAS  Google Scholar 

  89. Chaney SB, Shanmukh S, Zhao Y-P, Dluhy RA (2005) Randomly aligned silver nanorod arrays produce high sensitivity SERS substrates. Appl Phys Lett 87:31908–31910

    Article  Google Scholar 

  90. Driskell JD, Shanmukh S, Liu Y, Chaney SB, Tang XJ et al (2008) The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates. J Phys Chem C 112:895–901

    Article  CAS  Google Scholar 

  91. Liu YJ, Fan JG, Zhao YP, Shanmukh S, Dluhy RA (2006) Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate. Appl Phys Lett 89:173134

    Article  Google Scholar 

  92. Premasiri WR, Moir DT, Klempner MS, Ziegler LD (2007) Surface-enhanced Raman scattering of microorganisms. New Approaches Biomed Spectrosc 963:164–185

    Article  CAS  Google Scholar 

Books and Reviews

  • Carter EA, Marshall CP, Ali MHM, Ganendren R, Sorrell TC, Wright L, Lee Y-C, Chen C-I, Lay PA (2007) Infrared spectroscopy of microorganisms: characterization, identification, and differentiation. In: Kneipp K, Aroca R, Kneipp H, Wentrup-Byrne E (eds) New approaches in biomedical spectroscopy. American Chemical Society, Washington, DC, pp 64–84

    Chapter  Google Scholar 

  • Huang WE, Li M, Jarvis RM, Goodacre R, Banwart SA (2010) Shining light on the microbial world: the application of Raman microspectroscopy. In: Laskin A, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 70. Elsevier, San Diego, pp 153–186

    Google Scholar 

  • Ince J, McNally A (2009) Development of rapid, automated diagnostics for infectious disease: advances and challenges. Expert Rev Med Devices 6(6):641–651

    Article  PubMed  CAS  Google Scholar 

  • Posthuma-Trumpie G, Korf J, van Amerongen A (2009) Lateral flow (immune)assay: its strengths, weakness, opportunities and threats. A literature survey. Anal Bioanaly Chem 393:569–582

    Article  CAS  Google Scholar 

  • Premasiri WR, Moir DT, Klempner MS, Ziegler LD (2007) Surface-enhanced Raman scattering of microorganisms. In: Kneipp K, Aroca R, Kneipp H, Wentrup-Byrne E (eds) New approaches in biomedical spectroscopy. American Chemical Society, Washington, DC, pp 164–199

    Chapter  Google Scholar 

  • Quan P-L, Briese T, Palacios G, Lipkin WI (2008) Rapid sequence-based diagnosis of viral infection. Antiviral Res 79:1–5

    Article  PubMed  CAS  Google Scholar 

  • Sharaf MA, Illman DL, Kowalski BR (1986) Chemometrics. Wiley, New York

    Google Scholar 

  • Tuma R, Thomas GJ Jr (2002) Raman spectroscopy of viruses. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy applications in life, pharmaceutical and natural sciences, vol 5. Wiley, West Sussex, pp 3519–3535

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy D. Driskell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Driskell, J.D., Tripp, R.A. (2013). Infectious Diseases, Vibrational Spectroscopic Approaches to Rapid Diagnostics. In: Kanki, P., Grimes, D. (eds) Infectious Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5719-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5719-0_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5718-3

  • Online ISBN: 978-1-4614-5719-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics