Skip to main content

Oxidation Catalysts for Green Chemistry

  • Chapter
  • First Online:
Innovations in Green Chemistry and Green Engineering
  • 2863 Accesses

Abstract

The term “green catalyst” has no single definition. Currently, it is most commonly associated with catalysts that are recoverable or prepared from readily available starting materials. A truer definition, although circular, is that a green oxidation catalyst, or any catalyst for that matter, is one that conforms to green chemistry and green engineering principles. Creating a green oxidation catalyst a priori is a complex task because every aspect of the catalyst needs examination and to be of practical value it must provide a cost benefit to the end-user. Here, some general guidelines for what a green oxidation catalyst might be are presented.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 17.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Catalyst:

A substance that initiates or increases the rate of a chemical reaction by reducing the activation energy for the reaction without itself undergoing any permanent chemical change.

Commodity chemicals:

Chemicals that are produced on the millions of tons per year scale that are used as building blocks for more sophisticated chemicals.

Green chemistry:

The design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances.

Oxidation:

The loss of electrons or the increase in oxidation state of a molecule, atom, or ion.

Self-oxidation:

A situation where the active oxidation catalyst oxidizes itself, usually resulting in degradation and loss of activity.

Speciality chemicals:

Chemicals that are produced on a relatively small scale often for a particular application.

Bibliography

  1. Walker JD, Enache M, Dearden JD (2006) Quantitative cationic activity relationships for predicting toxicity of metal ions from physicochemical properties and natural occurrence levels. QSAR Comb Sci 26:522–527

    Article  CAS  Google Scholar 

  2. Walker JD, Enache M, Dearden JC (2003) Quantitative cationic-activity relationships for predicting toxicity of metals. Environ toxicology chemistry SETAC 22:1916–1935

    Article  CAS  Google Scholar 

  3. USEPA (2007) Framework for Metals Risk Assessment. http://www.epa.gov/raf/metalsframework/pdfs/metals-risk-assessment-final.pdf. Accessed 17 May 2010

  4. Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem Rev 107:2709–2724

    Article  CAS  Google Scholar 

  5. Anastas PT, Kirchhoff MM, Williamson TC (2001) Catalysis as a foundational pillar of green chemistry. Appl Catal A Gen 221:3–13

    Article  CAS  Google Scholar 

  6. Anastas PT, Zimmerman JB (2003) Peer reviewed: design through the 12 principles of green engineering. Environ Sci Technol 37:94–101

    Article  Google Scholar 

  7. World Commission on Environment and Development (1987) Our common future. Oxford University Press, Oxford

    Google Scholar 

  8. Anastas PT, Williamson TC (1996) Green chemistry: an overview. ACS Symp Ser 626:1–17

    Article  CAS  Google Scholar 

  9. Anastas PT, Warner JC (1998) Green: chemistry theory and practice. Oxford University Press, Oxford

    Google Scholar 

  10. Centi G, Perathoner S (2003) Catalysis and sustainable (green) chemistry. Catal Today 77:287–297

    Article  CAS  Google Scholar 

  11. Wsniak J (2000) Jöns Jacob Berzelius a guide to the perplexed chemist. Chem Educ 5:343–350

    Article  Google Scholar 

  12. Berzelius JJ (1836) Jahres-Bericht über die Fortschritte der Physichen Wissenschaften. 15:237–245 H. Laupp, Tübingen

    Google Scholar 

  13. Roberts M (2000) Birth of the catalytic concept (1800–1900). Catal Lett 67:1–4

    Article  Google Scholar 

  14. Brégeault J-M (2003) Transition-metal complexes for liquid-phase catalytic oxidation: some aspects of industrial reactions and of emerging technologies. J Chem Soc Dalton Trans 17:3289–3302

    Google Scholar 

  15. Smith MB, March J (2007) March's advanced organic chemistry: reactions, mechanisms, and structure, 6th edn. Wiley, Hoboken

    Google Scholar 

  16. Katsuki T, Sharpless KB (1980) The first practical method for asymmetric epoxidation. J Am Chem Soc 102:5974–5976

    Article  CAS  Google Scholar 

  17. Sheehan RJ (2005) Terephthalic acid, dimethyl terephthalate, and isophthalic acid. In: Book ullmann's encyclopedia of industrial chemistry. Wiley, Weinheim, pp 1–13

    Google Scholar 

  18. Cavani F, Teles JH (2009) Sustainability in catalytic oxidation: an alternative approach or a structural evolution? ChemSusChem 2:508–534

    Article  CAS  Google Scholar 

  19. Gogate P, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Enviro Res 8:501–551

    Article  CAS  Google Scholar 

  20. van Haveren J, Scott EL, Sanders J (2008) Bulk chemicals from biomass. Biofuels Bioprod Biorefin 2:41–57

    Article  CAS  Google Scholar 

  21. Werpy T, Holladay J, White J, Peterson G, Bozell JJ, Aden A, Manheim A (2004) Top value added chemicals from biomass, vol 1.), Results of screening for potential candidates from sugars and synthetic gas U.S. Department of Energy, NREL/TP-510-35523

    Google Scholar 

  22. Cavani F, Ballarini N, Luciani S (2009) Catalysis for society:towards improved process efficiency in catalytic selective oxidations. Top Catal 52:935–947

    Article  CAS  Google Scholar 

  23. Cavani F, Ballarini N (2009) Recent achievements and challenges for a greener chemical industry. In: Mizuno N (ed) Modern heterogenous oxidation catalysis: design, reactions and characterization. Wiley, Weinheim, pp 289–331

    Chapter  Google Scholar 

  24. Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  Google Scholar 

  25. Teng Y, Jiao x, Wang J, Xu W, Yang J (2009) Environmentally geochemical characteristics of vanadium in the topsoil in the Panzhihua mining area, Sichuan Province. China Chin J Geochem 28:105–111

    Article  CAS  Google Scholar 

  26. Hermans I, Spier ES, Neuenschwander U, Turrá N, Baiker A (2009) Selective oxidation catalysis: opportunities and challenges. Top Catal 52:1162–1174

    Article  CAS  Google Scholar 

  27. Clerici MG, Bellussi G, Romano U (1991) Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. J Catal 129:159–167

    Article  CAS  Google Scholar 

  28. Clerici MG (2009) Titanium silicalite-1. In: Jackson SD, Hargreaves JSJ (eds) Metal oxide catalysis, vol 2. Wiley, Weinheim, pp 705–754

    Google Scholar 

  29. Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen, BM (2006) The production of propene oxide: A catalytic processes and recent developments. Ind Eng Chem Res 45:3447–3459

    Article  CAS  Google Scholar 

  30. Nijhuis TA, Huizinga BJ, Makkee M, Moulijn JA (1999) Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports. Ind Eng Chem Res 38(3):884

    Article  CAS  Google Scholar 

  31. Stare J, Henson NJ, Eckert J (2009) Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1. J Chem Info Mod 49:833–846

    Article  CAS  Google Scholar 

  32. Li YG, Lee YM, Porter JF (2002) The synthesis and characterization of titanium silicalite-1. J Mater Sci 37:1959–1965

    Article  CAS  Google Scholar 

  33. Baccile N, Babonneau F, Thomas B, Coradin T (2009) Introducing ecodesign in silica solìgel materials. J Mater Chem 19:8537–8559

    Article  CAS  Google Scholar 

  34. Sheldon RA (1992) Organic synthesis – past, present and future. Chem Ind Lond 23:903–906

    Google Scholar 

  35. Sheldon RA (1997) Catalysis: the key to waste minimization. J Chem Technol Biotechnol 68:381–388

    Article  CAS  Google Scholar 

  36. Sheldon RA (2007) The E factor: fifteen years on. Green Chem 9:1273–1283

    Article  CAS  Google Scholar 

  37. Calvo-Flores FG (2009) Sustainable chemistry metrics. ChemSusChem 2:905–919

    Article  CAS  Google Scholar 

  38. Eckelman MJ, Zimmerman JB, Anastas PT (2008) Toward green nano: e-factor analysis of several nanomaterial syntheses. J Ind Ecol 12:316–328

    Article  CAS  Google Scholar 

  39. Dahl JeA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269

    Article  CAS  Google Scholar 

  40. Hermans I, Peeters J, Jacobs PA (2008) Autoxidation chemistry: bridging the gap between homogeneous radical chemistry and (heterogeneous) catalysis. Top Catal 48:41–48

    Article  CAS  Google Scholar 

  41. Thomas JM, Raja R (2006) The advantages and future potential of single-site heterogeneous catalysts. Top Catal 40:3–17

    Article  CAS  Google Scholar 

  42. Niu W, Draths KM, Frost JW (2002) Benzene-free synthesis of adipic acid. Biotechnol Progr 18:201–211

    Article  CAS  Google Scholar 

  43. Sato K, Aoki M, Noyori R (1998) A “Green” route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 281:1646–1647

    Article  CAS  Google Scholar 

  44. Strigul N, Koutsospyros A, Christodoulatos C (2010) Tungsten speciation and toxicity: acute toxicity of mono – and poly-tungstates to fish. Ecotoxicol Environ Saf 73:164–171

    Article  CAS  Google Scholar 

  45. Smith BJ, Patrick VA (2000) Quantitative determination of sodium metatungstate speciation by 183W NMR spectroscopy. Aust J Chem 53:965–970

    Article  CAS  Google Scholar 

  46. Deng Y, Ma Z, Wang K, Chen J (1999) Clean synthesis of adipic acid by direct oxidation of cyclohexene with H2O2 over peroxytungstate-organic complex catalysts. Green Chem 1:275–276

    Article  CAS  Google Scholar 

  47. Buonomenna MG, Golemme G, De Santo MP, Drioli E (2010) Direct oxidation of cyclohexene with inert polymeric membrane reactor. Org Proc Res Dev 14:252–258

    Article  CAS  Google Scholar 

  48. York APE, Xiao T, Green MLH (2003) Brief overview of the partial oxidation of methane to synthesis gas. Top Catal 22:345–358

    Article  CAS  Google Scholar 

  49. Enger BC, Lødeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A Gen 346:1–27

    Article  CAS  Google Scholar 

  50. Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, DuBois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Rostrup-Nielson J, Sachtler WMH, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults BR, Tumas W (2001) Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev 101:953–996

    Article  CAS  Google Scholar 

  51. Kirillova MV, Kozlov YN, Shul'pina LS, Lyakin OY, Kirillov AM, Talsi EP, Pombeiro AJL, Shul'pin GB (2009) Remarkably fast oxidation of alkanes by hydrogen peroxide catalyzed by a tetracopper(II) triethanolaminate complex: promoting effects of acid co-catalysts and water, kinetic and mechanistic features. J Catal 268:26–38

    Article  CAS  Google Scholar 

  52. Beckers J, Rothenberg G (2010) Sustainable selective oxidations using ceria-based materials. Green Chem 12:939

    Article  CAS  Google Scholar 

  53. Czuprat O, Werth S, Schirrmeister S, Schiestel T, Caro J (2009) Olefin production by a multistep oxidative dehydrogenation in a perovskite hollow-fiber membrane reactor. ChemCatChem 1:401–405

    Article  CAS  Google Scholar 

  54. Madeira LM, Portela MF (2002) Catalytic oxidative dehydrogenation of n-butane. Catal Rev 44:247–286

    Article  CAS  Google Scholar 

  55. Grabowski R (2006) Kinetics of oxidative dehydrogenation of C2-C3 alkanes on oxide catalysts. Catal Rev 48:199–268

    Article  CAS  Google Scholar 

  56. Meth-Cohn O, Smith M (1994) What did W. H. Perkin actually make when he oxidized aniline to obtain mauveine? Perkin Trans 1:5–7

    Google Scholar 

  57. Sousa MM, Melo MJ, Parola AJ, Morris PJT, Rzepa HS, de Melo JSS (2008) A study in mauve: unveiling Perkin's dye in historic samples. Chem Euro J 14:8507–8513

    Article  CAS  Google Scholar 

  58. He L, Wang L-C, Sun H, Ni J, Cao Y, He H-Y, Fan K-N (2009) Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source. Angew Chem Int Ed 48:9538–9541

    Article  CAS  Google Scholar 

  59. Li S-C, Diebold U (2010) Reactivity of TiO2 rutile and anatase surfaces toward nitroaromatics. J Am Chem Soc 132:64–66

    Article  CAS  Google Scholar 

  60. Mann PJG, Saunders BC (1935) Peroxidase action. I. The oxidation of aniline. Proc R Soc Lond B Biol Sci 119:47–60

    Article  CAS  Google Scholar 

  61. Sheldon RA, Kochi JK (1981) Metal-catalyzed oxidations of organic compounds. Academic, New York

    Google Scholar 

  62. Collins TJ (1994) Designing ligands for oxidizing complexes. Acc Chem Res 27:279–285

    Article  CAS  Google Scholar 

  63. Schmid A, Dordick J, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258

    Article  CAS  Google Scholar 

  64. Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths – biocatalysis in industrial synthesis. Science 299:1694–1697

    Article  CAS  Google Scholar 

  65. Yuryev R, Liese A (2010) Biocatalysis: the outcast. ChemCatChem 2:103–107

    Article  CAS  Google Scholar 

  66. Matsuda T, Yamanaka R, Nakamura K (2009) Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron Asymmetr 20:513–557

    Article  CAS  Google Scholar 

  67. van de Velde F, Lourenço ND, Bakker M, van Rantwijk F, Sheldon RA (2000) Improved operational stability of peroxidases by coimmobilization with glucose oxidase. Biotechnol Bioeng 69:286–291

    Article  Google Scholar 

  68. Kuhn D, Kholiq MA, Heinzle E, Bühler B, Schmid A (2010) Intensification and economic and ecological assessment of a biocatalytic oxyfunctionalization process. Green Chem 12:815–827

    Article  CAS  Google Scholar 

  69. Que L Jr, Tolman WB (2008) Biologically inspired oxidation catalysis. Nature 455:333–340

    Article  CAS  Google Scholar 

  70. Costas M, Chen K, Que L Jr (2000) Biomimetic nonheme iron catalysts for alkane hydroxylation. Coord Chem Rev 200–202:517–544

    Article  Google Scholar 

  71. Piera J, Bäckvall J-E (2008) Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer – a biomimetic approach. Angew Chem Int Ed 47:3506–3523

    Article  CAS  Google Scholar 

  72. Meunier B, de Visser SP, Shaik S (2004) Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev 104:3947–3980

    Article  CAS  Google Scholar 

  73. McLain JL, Lee J, Groves JT (2000) Biomimetic oxygenations related to cytochrome P450: metal-oxo and metal-peroxo intermediates. In: Meunier B (ed) Biomimetic oxidations catalyzed by transition metal complexes. Imperial College Press, London, pp 91–169

    Chapter  Google Scholar 

  74. Groves JT, Nemo TE, Myers RS (1979) Hydroxylation and epoxidation catalyzed by iron-porphine complexes. oxygen transfer from iodosylbenzene. J Am Chem Soc 101:1032–1033

    Article  CAS  Google Scholar 

  75. Leroy J, Bondon A (2007) β-Fluorinated porphyrins and related compounds: an overview. Eur J Org Chem 2008:417–433

    Article  CAS  Google Scholar 

  76. Cai Y, Liu Y, Lu Y, Gao G, He M (2008) Ionic manganese porphyrins with S-containing counter anions: mimicking cytochrome P450 activity for alkene epoxidation. Catal Lett 124:334–339

    Article  CAS  Google Scholar 

  77. Nagarajan S, Nagarajan R, Bruno F, Samuelson LA, Kumar J (2009) A stable biomimetic redox catalyst obtained by the enzyme catalyzed amidation of iron porphyrin. Green Chem 11:334–338

    Article  CAS  Google Scholar 

  78. Liu Y, Zhang H-J, Lu Y, Cai Y-Q, Liu X-L (2007) Mild oxidation of styrene and its derivatives catalyzed by ionic manganese porphyrin embedded in a similar structured ionic liquid. Green Chem 9:1114–1119

    Article  CAS  Google Scholar 

  79. Lente G, Espenson JH (2005) Oxidation of 2, 4, 6-trichlorophenol by hydrogen peroxide Comparison of different iron-based catalysts. Green Chem 7:28–34

    Article  CAS  Google Scholar 

  80. Stahl SS (2004) Palladium oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover. Angew Chem Int Ed 43:3400–3420

    Article  CAS  Google Scholar 

  81. Allardyce CS, Dyson PJ (2001) Ruthenium in medicine: current clinical uses and future prospects. Platinum Met Rev 45:62–69

    CAS  Google Scholar 

  82. Pope MT, Muller A (2002) Polyoxometalate chemistry from topology via self assembly to applications. Kluwer, New York

    Book  Google Scholar 

  83. Jeannin YP (1998) The nomenclature of polyoxometalates: how to connect a name and a structure. Chem Rev 98:51–76

    Article  CAS  Google Scholar 

  84. Hill CL, Delannoy L, Duncan DC, Weinstock IA, Renneke RF, Reiner RS, Atalla RH, Han JW, Hillesheim DA, Cao R, Anderson TM, Okun NM, Musaev DG, Geletii YV (2007) Complex catalysts from self-repairing ensembles to highly reactive air-based oxidation systems. Comptes rendus Chim 10:305–312

    Article  CAS  Google Scholar 

  85. Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198

    Article  CAS  Google Scholar 

  86. Long D-L, Burkholder E, Cronin L (2007) Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem Soc Rev 36:105–121

    Article  CAS  Google Scholar 

  87. Trubitsyna T, Kholdeeva O (2008) Kinetics and mechanism of the oxidation of 2, 3, 6-trimethylphenol with hydrogen peroxide in the presence of Ti-monosubstituted polyoxometalates. Kinet Catal 49:371–378

    Article  CAS  Google Scholar 

  88. Neumann R (2010) Activation of molecular oxygen, polyoxometalates, and liquid-phase catalytic oxidation. Inorg Chem 49:3594–3601

    Article  CAS  Google Scholar 

  89. Maayan G, Ganchegui B, Leitner W, Neumann R (2006) Selective aerobic oxidation in supercritical carbon dioxide catalyzed by the H5PV2Mo10O40 polyoxometalate. Chem Commun 21:2230–2232

    Article  CAS  Google Scholar 

  90. Vazylyev M, Sloboda-Rozner D, Haimov A, Maayan G, Neumann R (2005) Strategies for oxidation catalyzed by polyoxometalates at the interface of homogeneous and heterogeneous catalysis. Top Catal 34:93–99

    Article  CAS  Google Scholar 

  91. Clark JH, Tavener SJ (2007) Alternative solvents: shades of green. Org Proc Res Dev 11:149–155

    Article  CAS  Google Scholar 

  92. Collins TJ (2001) Papermaking: green chemistry through the mill. Nature 414:161–162

    Article  CAS  Google Scholar 

  93. Weiner H, Finke RG (1999) An all-inorganic, polyoxometalate-based catechol dioxygenase that exhibits >100 000 catalytic turnovers. J Am Chem Soc 121:9831–9842

    Article  CAS  Google Scholar 

  94. Curzons AD, Constable DJ, Mortimer DN, Cunningham VL (2001) So you think your process is green, how do you know? Using principles of sustainability to determine what is green – a corporate perspective. Green Chem 3:1–6

    Article  CAS  Google Scholar 

  95. Höft E (1993) Enantioselective epoxidation with peroxidic oxygen. Top Curr Chem 164:63–77

    Article  Google Scholar 

  96. Canali L, Karjalainen JK, Sherrington DC, Hormi O (1997) Efficient polymer-supported sharpless alkene epoxidation catalyst. Chem Commun 1997:123–124

    Article  Google Scholar 

  97. Zhang W, Loebach JL, Wilson SR, Jacobsen EN (1990) Enantioselective epoxidation of unfunctionalized olefins catalyzed by (Salen)manganese complexes. J Am Chem Soc 112:2801–2803

    Article  CAS  Google Scholar 

  98. Irie R, Noda K, Ito Y, Matsumoto N, Katsuki T (1990) Catalytic asymmetric epoxidation of unfunctionalized olefins. Tetrahedron Lett 31:7345–7348

    Article  CAS  Google Scholar 

  99. Katsuki T (1995) Catalytic asymmetric oxidations using optically-active (salen)manganese(III) complexes as catalysts. Coord Chem Rev 140:189–214

    Article  CAS  Google Scholar 

  100. Srinivasan K, Michaud P, Kochi JK (1986) Epoxidation of olefins with cationic (salen)MnIII complexes. The modulation of catalytic activity by substituents. J Am Chem Soc 108:2309–2320

    Article  CAS  Google Scholar 

  101. Groves JT, Myers RS (1983) Catalytic asymmetric epoxidations with chiral iron porphyrins. J Am Chem Soc 105:5791–5796

    Article  CAS  Google Scholar 

  102. Limburg J, Brudvig GW, Crabtree RH (2000) Modeling the oxygen-evolving complex in photosystem II. In: Meunier B (ed) Biomimetic oxidations catalyzed by transition metal complexes. Imperial College Press, London, pp 509–541

    Chapter  Google Scholar 

  103. Zou X, Fu X, Li Y, Tu X, Fu S, Luo Y, Wu X (2010) Highly enantioselective epoxidation of unfunctionalized olefins catalyzed by chiral Jacobsen's catalyst immobilized on phenoxy-modified zirconium poly(styrene-phenylvinylphosphonate)phosphate. Adv Synth Catal 352:163–170

    Article  CAS  Google Scholar 

  104. Das P, Silva AR, Carvalho AP, Pires J, Freire C (2009) Enantioselective epoxidation of alkenes by Jacobsen catalyst anchored onto aminopropyl-functionalised laponite, MCM-41 and FSM-16. Catal Lett 129:367–375

    Article  CAS  Google Scholar 

  105. Fraile JM, García JI, Mayoral JA (2009) Noncovalent immobilization of enantioselective catalysts. Chem Rev 109:360–417

    Article  CAS  Google Scholar 

  106. Grigoropoulou G, Clark JH, Elings JA (2003) Recent developments on the epoxidation of alkenes using hydrogen peroxide as an oxidant. Green Chem 5:1–7

    Article  CAS  Google Scholar 

  107. Bhattacharjee S, Anderson JA (2004) Epoxidation by layered double hydroxide-hosted catalysts. Catalyst synthesis and use in the epoxidation of R-(+)-Limonene and (-)-α-Pinene using molecular oxygen. Catal Lett 95:119–125

    Article  CAS  Google Scholar 

  108. Creager SE, Raybuck SA, Murray RW (1986) An efficient electrocatalytic model cytochrome P-450 epoxidation cycle. J Am Chem Soc 108:4225–4227

    Article  CAS  Google Scholar 

  109. Horwitz CP, Creager SE, Murray RW (1990) Electrocatalytic olefin epoxidation using manganese Schiff-base complexes and dioxygen. Inorg Chem 29:1006–1011

    Article  CAS  Google Scholar 

  110. Guo P, Wong K-Y (1999) Enantioselective electrocatalytic epoxidation of olefins by chiral manganese Schiff-base complexes. Electrochem Commun 1:559–563

    Article  CAS  Google Scholar 

  111. Fatibello-Filho O, Dockal ER, Marcolino-Junior LH, Teixeira MFS (2007) Electrochemical modified electrodes based on metal-salen complexes. Anal Lett 40:1825–1852

    Article  CAS  Google Scholar 

  112. List B (2007) Introduction: organocatalysis. Chem Rev 107:5413–5415

    Article  CAS  Google Scholar 

  113. MacMillan DWC (2008) The advent and development of organocatalysis. Nature 455:304–308

    Article  CAS  Google Scholar 

  114. Dondoni A, Massi A (2008) Asymmetric organocatalysis: from infancy to adolescence. Angew Chem Int Ed 47:4638–4661

    Article  CAS  Google Scholar 

  115. Wong OA, Shi Y (2008) Organocatalytic oxidation. Asymmetric epoxidation of olefins catalyzed by chiral ketones and iminium salts. Chem Rev 108:3958–3987

    Article  CAS  Google Scholar 

  116. Tu Y, Wang Z-X, Shi Y (1996) An efficient asymmetric epoxidation method for trans-olefins mediated by a fructose-derived ketone. J Am Chem Soc 118:9806–9807

    Article  CAS  Google Scholar 

  117. Shu L, Shi Y (1999) Asymmetric epoxidation using hydrogen peroxide (H2O2) as primary oxidant. Tetrahedron Lett 40:8721–8724

    Article  CAS  Google Scholar 

  118. Sheldon RA, Arends IWCE (2004) Organocatalytic oxidations mediated by nitroxyl radicals. Adv Synth Catal 346:1051–1071

    Article  CAS  Google Scholar 

  119. Bowman DF, Gillan T, Ingold KU (1971) Kinetic applications of electron paramagnetic resonance spectroscopy. III. Self-reactions of dialkyl nitroxide radicals. J Am Chem Soc 93:6555–6561

    Article  CAS  Google Scholar 

  120. Phukan P, Khisti RS, Sudalai A (2006) Green protocol for the synthesis of N-oxides from secondary amines using vanadium silicate molecular sieve catalyst. J Mol Catal A Chem 248:109–112

    Article  CAS  Google Scholar 

  121. Ciriminna R, Pagliaro M (2010) Industrial oxidations with organocatalyst TEMPO and its derivatives. Org Proc Res Dev 14:245–251

    Article  CAS  Google Scholar 

  122. Carson R (1962) Silent spring. Houghton Mifflin, Boston

    Google Scholar 

  123. Blackmond DG, Armstrong A, Coombe V, Wells A (2007) Water in organocatalytic processes: debunking the myths. Angew Chem Int Ed 46:3798–3800

    Article  CAS  Google Scholar 

  124. Mantzavinos D, Psillakis E (2004) Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. J Chem Tech Biotech 79:431–454

    Article  CAS  Google Scholar 

  125. Walling C (1975) Fenton's reagent revisited. Acc Chem Res 8:125–131

    Article  CAS  Google Scholar 

  126. Richter HW, Waddell WH (1983) Mechanism of the oxidation of dopamine by the hydroxyl radical in aqueous solution. J Am Chem Soc 105:5434–5440

    Article  CAS  Google Scholar 

  127. Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J chem Soc Trans 65:899–910

    Article  CAS  Google Scholar 

  128. Masarwa A, Rachmilovich-Calis S, Meyerstein N, Meyerstein D (2005) Oxidation of organic substrates in aerated aqueous solutions by the fenton reagent. Coord Chem Rev 249:1937–1943

    Article  CAS  Google Scholar 

  129. Watts RJ, Teel AL (2005) Chemistry of modified fenton's reagent (catalyzed H2O2 propagations-CHP) for in situ soil and groundwater remediation. J Enviro Eng 131:612–622

    Article  CAS  Google Scholar 

  130. Millioli VS, Freire DDC, Cammarota MC (2002) Testing the efficiency of Fenton's reagent in treatment of petroleum-contaminated sand. Engenharia Térmica, Edição Especial 44–47

    Google Scholar 

  131. Nadtochenko V, Kiwi J (1998) Photoinduced mineralization of xylidine by the Fenton reagent. 2. Implications of the precursors formed in the dark. Environ Sci Technol 32:3282–3285

    Article  CAS  Google Scholar 

  132. Yu R-F, Chen H-W, Liu K-Y, Cheng W-P, Hsieh P-H (2010) Control of the fenton process for textile wastewater treatment using artificial neural networks. J Chem Technol Biotechnol 85:267–278

    CAS  Google Scholar 

  133. Sun Y, Pignatello JJ (1992) Chemical treatment of pesticide wastes. Evaluation of Fe(III) chelates for catalytic hydrogen peroxide oxidation of 2, 4-D at circumeutral pH. J Agric Food Chem 40:322–327

    Article  CAS  Google Scholar 

  134. Sun Y, Pignatello JJ (1993) Activation of hydrogen peroxide by iron(III) chelates for abiotic degradation of herbicides and insecticides in water. J Agric Food Chem 41:308–312

    Article  CAS  Google Scholar 

  135. Lewis S, Lynch A, Bachas L, Hampson S, Ormsbee L, Bhattacharyya D (2009) Chelate-modified fenton reaction for the degradation of trichloroethylene in aqueous and two-phase systems. Enviro Eng Sci 26:849–859

    Article  CAS  Google Scholar 

  136. Cybulski A (2007) Catalytic wet air oxidation: are monolithic catalysts and reactors feasible? Ind Engr Chem Res 46:4007–4033

    Article  CAS  Google Scholar 

  137. Collins TJ, Gordon-Wylie SW, Bartos MJ, Horwitz CP, Woomer CG, Williams SA, Patterson RE, Vuocolo LD, Paterno SA, Strazisar SA, Peraino DK and Dudash CA (1998) The design of green oxidants. In: Anastas P, Warner JC (eds) Greem Chemistry, pp. 46–71

    Google Scholar 

  138. Ellis WC, Tran CT, Denardo MA, Fischer A, Ryabov AD, Collins TJ (2009) Design of more powerful iron-TAML peroxidase enzyme mimics. J Am Chem Soc 131:18052–18053

    Article  CAS  Google Scholar 

  139. Collins TJ, Khetan SK, Ryabov AD (2009) Chemistry and applications of iron-TAML catalysts in green oxidation processes based on hydrogen peroxide. In: Anastas PT, Crabtree R (eds) Handbook of green chemistry, vol 1. Wiley, Weinheim, pp 39–77

    Google Scholar 

  140. Ryabov AD, Collins TJ (2009) Mechanistic considerations on the reactivity of green FeIII-TAML activators of peroxides. Adv Inorg Chem 61:471–521

    Article  CAS  Google Scholar 

  141. Chanda A, Ryabov AD, Mondal S, Alexandrova L, Ghosh A, Hangun-Balkir Y, Horwitz CP, Collins TJ (2006) Activity-stability parameterization of homogeneous green oxidation catalysts. Chem Euro J 12:9336–9345

    Article  CAS  Google Scholar 

  142. Polshin V, Popescu D-L, Fischer A, Chanda A, Horner DC, Beach ES, Henry J, Qian Y-L, Horwitz CP, Lente G, Fabian I, Muenck E, Bominaar EL, Ryabov AD, Collins TJ (2008) Attaining control by design over the hydrolytic stability of Fe-TAML oxidation catalysts. J Am Chem Soc 130:4497–4506

    Article  CAS  Google Scholar 

  143. Georgi A, Schierz A, Trommler U, Horwitz CP, Collins TJ, Kopinke F (2007) Humic acid modified Fenton reagent for enhancement of the working pH range. Appl Catal B Enviro 72:26–36

    Article  CAS  Google Scholar 

  144. Gupta SS, Stadler M, Noser CA, Ghosh A, Steinhoff B, Lenoir D, Horwitz CP, Schramm K-W, Collins TJ (2002) Rapid total destruction of chlorophenols by activated hydrogen peroxide. Science 296:326–328

    Article  Google Scholar 

  145. Horwitz CP, Fooksman DR, Vuocolo LD, Gordon-Wylie SW, Cox NJ, Collins TJ (1998) Ligand design approach for securing robust oxidation catalysts. J Am Chem Soc 120:4867–4868

    Article  CAS  Google Scholar 

  146. Chahbane N, Popescu D-L, Mitchell DA, Chanda A, Lenoir D, Ryabov AD, Schramm K-W, Collins TJ (2007) FeIII-TAML-catalyzed green oxidative degradation of the azo dye Orange II by H2O2 and organic peroxides: products, toxicity, kinetics, and mechanisms. Green Chem 9:49–57

    Article  CAS  Google Scholar 

  147. Horwitz CP, Collins TJ, Spatz J, Smith HJ, Wright LJ, Stuthridge TR, Wingate KG, McGrouther K (2006) Iron-TAML catalysts in the pulp and paper industry. ACS Symp Ser 921:156–169

    Article  CAS  Google Scholar 

  148. Chanda A, Khetan SK, Banerjee D, Ghosh A, Collins TJ (2006) Total degradation of fenitrothion and other organophosphorus pesticides by catalytic oxidation employing Fe-TAML peroxide activators. J Am Chem Soc 128:12058–12059

    Article  CAS  Google Scholar 

  149. Banerjee D, Markley AL, Yano T, Ghosh A, Berget PB, Minkley E Jr, Khetan SK, Collins TJ (2006) “Green” oxidation catalysis for rapid deactivation of bacterial spores. Angew Chem Int Ed 45:3974–3977

    Article  CAS  Google Scholar 

  150. Shappell NW, Vrabel MA, Madsen PJ, Harrington G, Billey LO, Hakk H, Larson GL, Beach E, Horwitz CP, Ro K, Hunt PG, Collins TJ (2008) Destruction of estrogens using Fe-TAML/peroxide catalysis. Environ Sci Technol 42:1296–1300

    Article  CAS  Google Scholar 

  151. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Nat Acad Sci 103:15729–15735

    Article  CAS  Google Scholar 

  152. Nocera DG (2009) Chemistry of personalized solar energy. Inorg Chem 48:10001–10017

    Article  CAS  Google Scholar 

  153. Dismukes GC, van Willigen RT (2006) Manganese: the oxygen-evolving complex & models. Encyclopedia of Inorganic Chemistry 5:1–15

    Google Scholar 

  154. Raymond J, Blankenship RE (2008) The origin of the oxygen-evolving complex. Coord Chem Rev 252:377–383

    Article  CAS  Google Scholar 

  155. Dincă M, Surendranath Y, Nocera DG (2010) Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc Nat Acad Sci 107:10337–10341

    Article  Google Scholar 

  156. Surendranath Y, Dinca M, Nocera DG (2009) Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J Am Chem Soc 131:2615–2620

    Article  CAS  Google Scholar 

  157. Cross DP, Ramachandran G, Wattenberg EV (2001) Mixtures of nickel and cobalt chlorides induce synergistic cytotoxic effects: implications for inhalation exposure modeling. Ann Occup Hyg 45:409–418

    CAS  Google Scholar 

  158. Nakagawa T, Beasley CA, Murray RW (2009) Efficient electro-oxidation of water near its reversible potential by a Mesoporous IrOx Nanoparticle Film. J Phys Chem C 113:12958–12961

    Article  CAS  Google Scholar 

  159. Yin Q, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Luo Z, Hardcastle KI, Hill CL (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328:342–345

    Article  CAS  Google Scholar 

  160. Baer K, Kraußr M, Burda E, Hummel W, Berkessel A, Gröger H (2009) Sequential and modular synthesis of chiral 1, 3-diols with two stereogenic centers: access to all four stereoisomers by combination of organo- and biocatalysis. Angew Chem Int Ed 48:9355–9358

    Article  CAS  Google Scholar 

  161. Turner NJ (2009) Directed evolution drives the next generation of biocatalysts. Nat Chem Biol 5:567–573

    Article  CAS  Google Scholar 

  162. Fogg DE, dos Santos EN (2004) Tandem catalysis: a taxonomy and illustrative review. Coord Chem Rev 248:2365–2379

    Article  CAS  Google Scholar 

  163. Nicolaou KC, Chen JS (2009) The art of total synthesis through cascade reactions. Chem Soc Rev 38:2993–3009

    Article  CAS  Google Scholar 

  164. Forster PM, Cheetham AK (2003) Hybrid inorganic-organic solids: an emerging class of nanoporous catalysts. Top Catal 24:79–86

    Article  CAS  Google Scholar 

  165. Kaneda K, Mizugaki T (2009) Development of concerto metal catalysts using apatite compounds for green organic syntheses. Energy Enviro Sci 2:655–673

    Article  CAS  Google Scholar 

  166. Wight AP, Davis ME (2002) Design and preparation of organic-inorganic hybrid catalysts. Chem Rev 102:3589–3614

    Article  CAS  Google Scholar 

  167. Brunel D, Fajula F, Nagy JB, Deroide B, Verhoef MJ, Veum L, Peters JA, van Bekkum H (2001) Comparison of two MCM-41 grafted TEMPO catalysts in selective alcohol oxidation. Appl Catal A Gen 213:73–82

    Article  CAS  Google Scholar 

  168. Capello C, Fischer U, Hungerbühler K (2007) What is a green solvent? a comprehensive framework for the environmental assessment of solvents. Green Chem 9:927–934

    Article  CAS  Google Scholar 

  169. Olivier-Bourbigou H, Magna L, Morvan D (2009) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A Gen 373:1–56

    Article  CAS  Google Scholar 

  170. Deetlefs M, Seddon KR (2010) Assessing the greenness of some typical laboratory ionic liquid preparations. Green Chem 12:17–30

    Article  CAS  Google Scholar 

  171. Zhang W (2009) Green chemistry aspects of fluorous techniques-opportunities and challenges for small-scale organic synthesis. Green Chem 11:911–920

    Article  CAS  Google Scholar 

  172. Akien GR, Poliakoff M (2009) A critical look at reactions in class I and II gas-expanded liquids using CO2 and other gases. Green Chem 11:1083–1100

    Article  CAS  Google Scholar 

  173. Liu Y, Jessop PG, Cunningham M, Eckert CA, Liotta CL (2006) Switchable surfactants. Science 313:958–960

    Article  CAS  Google Scholar 

  174. Chavali S, Lin B, Miller DC, Camarda KV (2004) Environmentally-benign transition metal catalyst design using optimization techniques. Comput Chem Eng 28:605–611

    Article  CAS  Google Scholar 

  175. Guidoni L, Spiegel K, Zumstein M, Röthlisberger U (2004) Green oxidation catalysts: computational design of high-efficiency models of galactose oxidase. Angew Chem Int Ed 43:3286–3289

    Article  CAS  Google Scholar 

  176. Schüth F, Busch O, Hoffmann C, Johann T, Kiener C, Demuth D, Klein J, Schunk S, Strehlau W, Zech T (2002) High-throughput experimentation in oxidation catalysis. Top Catal 21:55–66

    Article  Google Scholar 

  177. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    Article  CAS  Google Scholar 

  178. Christensen CH, Rass-Hansen J, Marsden CC, Taarning E, Egeblad K (2008) The renewable chemicals industry. ChemSusChem 1:283–289

    Article  CAS  Google Scholar 

  179. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  180. Scott EL, Sanders JPM, Steinbüchel A (2010) Perspectives on Chemicals from Renewable Resources. In: Sustainable biotechnology, pp 195–210

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin P. Horwitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Horwitz, C.P. (2013). Oxidation Catalysts for Green Chemistry. In: Anastas, P., Zimmerman, J. (eds) Innovations in Green Chemistry and Green Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5817-3_9

Download citation

Publish with us

Policies and ethics