Skip to main content

Subcellular Remodeling and Cardiac Dysfunction Due to Ischemia–Reperfusion Injury

  • Chapter
  • First Online:
Cardiac Remodeling

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 5))

  • 1929 Accesses

Abstract

Ischemic heart disease as a consequence of the blockade of coronary flow is associated with dramatic changes in cardiac function, metabolism, and ultrastructure. A wide variety of subcellular defects have been observed in ischemic and ischemia–reperfusion (I/R) hearts. There is evidence that various subcellular organelles become remodeled during the development of I/R injury and oxidative stress may be intimately involved in producing these abnormalities. In view of the direct participation of the sarcoplasmic reticulum (SR) and myofibrils in heart function, it appears that cardiac contraction and relaxation abnormalities in ischemic heart disease are due to remodeling of the SR and myofibrils, whereas remodeling of the sarcolemma membrane may determine the extent of intracellular Ca2+ overload, subsequent proteolysis, and irreversible injury to the heart. Furthermore, the acute effects of I/R injury on cardiac function are thought to be due to changes in the activities of subcellular organelles as a consequence of functional group modification, whereas the chronic effects of I/R yielding delayed recovery of cardiac function may be the consequence of changes in cardiac gene expression and subcellular remodeling. Although female hearts are less susceptible to I/R injury, in comparison to males, the basis for this gender difference in cardiac ischemic injury and protection needs to be defined. As females lose their resistance to different cardiovascular diseases after menopause, it appears that gender differences in cardiac susceptibility to I/R injury may be mediated through the participation of ovarian hormones. On the other hand, it is possible that the male sex hormone, testosterone, exacerbates I/R-induced cardiac dysfunction in adult males. Notably, in comparison to males, there is very little information in the literature on subcellular remodeling or on the mechanisms which regulate cardiac function during the development of I/R injury in female hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jennings RB, Reimer KA (2007) The cell biology of acute myocardial ischemia. Annu Rev Med 42:225–246

    Google Scholar 

  2. Bolli R, Marban E (1999) Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 79:609–634

    PubMed  CAS  Google Scholar 

  3. Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47:446–456

    PubMed  CAS  Google Scholar 

  4. Kim SJ, Depre C, Vatner SF (2003) Novel mechanisms mediating stunned myocardium. Heart Fail Rev 8:143–153

    PubMed  CAS  Google Scholar 

  5. Dhalla NS, Saini HK, Tappia PS et al (2007) Potential role and mechanisms of subcellular remodeling in cardiac dysfunction due to ischemic heart disease. J Cardiovasc Med 8:238–250

    Google Scholar 

  6. Vanden Hoek TL, Li C, Shao Z et al (1997) Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J Mol Cell Cardiol 29:2571–2583

    PubMed  CAS  Google Scholar 

  7. Slezak J, Tribulova N, Pristacova J et al (1995) Hydrogen peroxide changes in ischemic and reperfused heart. Cytochemistry and biochemical and X-ray microanalysis. Am J Pathol 147:772–781

    PubMed  CAS  Google Scholar 

  8. Kukreja RC, Loesser KE, Kearns AA et al (1993) Protective effects of histidine during ischemia-reperfusion in isolated perfused rat hearts. Am J Physiol Heart Circ Physiol 264:H137–1381H

    Google Scholar 

  9. Lee WH, Gounarides JS, Roos ES, Wolin MS (2003) Influence of peroxynitrite on energy metabolism and cardiac function in a rat ischemia-reperfusion model. Am J Physiol Heart Circ Physiol 285:H1385–H1395

    PubMed  CAS  Google Scholar 

  10. Barrington PL, Meier CF Jr, Weglicki WB (1988) Abnormal electrical activity induced by free radical generating systems in isolated cardiocytes. J Mol Cell Cardiol 20:1163–1178

    PubMed  CAS  Google Scholar 

  11. Tarr M, Valenzeno DP (1991) Modification of cardiac ionic currents by photosensitizer-generated reactive oxygen. J Mol Cell Cardiol 23:639–649

    PubMed  CAS  Google Scholar 

  12. Coetzee WA, Opie LH (1992) Effects of oxygen free radicals on isolated cardiac myocytes from guinea-pig ventricle: electrophysiological studies. J Mol Cell Cardiol 24:651–663

    PubMed  CAS  Google Scholar 

  13. Burton KP, McCord JM, Ghai G (1984) Myocardial alterations due to free-radical generation. Am J Physiol Heart Circ Physiol 246:H776–H783

    CAS  Google Scholar 

  14. Kaminishi K, Yanagishita T, Kako KJ (1989) Oxidant injury to isolated heart cells. Can J Cardiol 5:168–174

    PubMed  CAS  Google Scholar 

  15. Prasad K, Kalra J, Chan WP, Chaudhary AK (1989) Effect of oxygen free radicals on cardiovascular function at organ and cellular levels. Am Heart J 117:1196–1202

    PubMed  CAS  Google Scholar 

  16. Leon H, Bautista-Lopaz N, Sawicka J, Schulz R (2007) Hydrogen peroxide causes cardiac dysfunction independent from its effects on matrix metalloproteinase-2 activation. Can J Physiol Pharmacol 85:341–348

    PubMed  CAS  Google Scholar 

  17. Sung M, Schulz CG, Wang W et al (2007) Matrix metalloproteinase-2 degrades the cytoskeletal protein alpha-actinin in peroxynitrite mediated myocardial injury. J Mol Cell Cardiol 43:429–436

    PubMed  CAS  Google Scholar 

  18. Leon H, Baczko I, Sawicki G et al (2008) Inhibition of matrix metalloproteinases prevents peroxynitrite-induced contractile dysfunction in the isolated cardiac myocyte. Br J Pharmacol 153:676–683

    PubMed  CAS  Google Scholar 

  19. Müller AL, Hryshko LV, Dhalla NS (2012) Extracellular and intracellular proteases in cardiac dysfunction due to ischemia-reperfusion injury. Int J Cardiol. doi:10.1016/j.ijcard.2012.01.103

  20. Dhalla NS, Saini HK, Duhamel TA (2008) Strategies for the regulation of intracellular calcium in ischemic heart disease. Future Cardiol 4:339–345

    PubMed  Google Scholar 

  21. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673

    PubMed  CAS  Google Scholar 

  22. Dhalla NS, Temsah RM (2001) Sarcoplasmic reticulum and cardiac oxidative stress: an emerging target for heart disease. Expert Opin Ther Targets 5:205–17

    PubMed  CAS  Google Scholar 

  23. Saini HK, Machackova J, Dhalla NS (2004) Role of reactive oxygen species in ischemic preconditioning of subcellular organelles in the heart. Antioxid Redox Signal 6:393–404

    PubMed  CAS  Google Scholar 

  24. Singh RB, Hryshko L, Freed D, Dhalla NS (2012) Activation of proteolytic enzymes and depression of the sarcolemmal Na+/K  +  −ATPase in ischemia-reperfused heart may be mediated through oxidative stress. Can J Physiol Pharmacol 90(2):249–60. doi:10.1139/y11-128

    PubMed  CAS  Google Scholar 

  25. Temsah RM, Netticadan T, Chapman D et al (1999) Alterations in sarcoplasmic reticulum function and gene expression in ischemic-reperfused rat heart. Am J Physiol Heart Physiol 277:H584–H594

    CAS  Google Scholar 

  26. Netticadan T, Temsah R, Osada M, Dhalla NS (1999) Status of Ca2+/calmodulin protein kinase phosphorylation of cardiac SR proteins in ischemia-reperfusion. Am J Physiol Cell Physiol 277:C384–C391

    CAS  Google Scholar 

  27. Temsah RM, Dyck C, Chapman D et al (2000) Effect of beta-adrenoceptor blockers on sarcoplasmic reticular function and gene expression in the ischemic-reperfused heart. J Pharmacol Exp Ther 293:15–23

    PubMed  CAS  Google Scholar 

  28. Osada M, Netticadan T, Tamura K, Dhalla NS (1998) Modification of ischemia-reperfusion-induced changes in cardiac sarcoplasmic reticulum by preconditioning. Am J Physiol Heart Circ Physiol 274:H2025–H2034

    CAS  Google Scholar 

  29. Osada M, Netticadan T, Kawabata K et al (2000) Ischemic preconditioning prevents I/R-induced alterations in SR calcium-calmodulin protein kinase II. Am J Physiol Heart Circ Physiol 278:H1791–H1791

    PubMed  CAS  Google Scholar 

  30. Kawabata K, Osada M, Netticadan T, Dhalla NS (1998) Beneficial effect of ischemic preconditioning on Ca2+ paradox in the rat heart. Life Sci 63:685–692

    PubMed  CAS  Google Scholar 

  31. Kawabata KI, Netticadan T, Osada M et al (2000) Mechanisms of ischemic preconditioning effects on Ca(2+) paradox-induced changes in heart. Am J Physiol Heart Circ Physiol 278:H1008–H1015

    PubMed  CAS  Google Scholar 

  32. Schoutsen B, Blom JJ, Verdouw PD, Lamers JM (1989) Calcium transport and phospholamban in sarcoplasmic reticulum of ischemic myocardium. J Mol Cell Cardiol 21:719–727

    PubMed  CAS  Google Scholar 

  33. Yoshida Y, Shiga T, Imai S (1990) Degradation of sarcoplasmic reticulum calcium-pumping ATPase in ischemic-reperfused myocardium: role of calcium-activated neutral protease. Basic Res Cardiol 85:495–507

    PubMed  CAS  Google Scholar 

  34. Krause SM (1991) Effect of increased free [Mg2+]i with myocardial stunning on sarcoplasmic reticulum Ca(2+)-ATPase activity. Am J Physiol Heart Physiol 261:H229–H235

    CAS  Google Scholar 

  35. Fukumoto K, Takenaka H, Onitsuka T et al (1991) Effect of hypothermic ischemia and reperfusion on calcium transport by myocardial sarcolemma and sarcoplasmic reticulum. J Mol Cell Cardiol 23:525–535

    PubMed  CAS  Google Scholar 

  36. Zucchi R, Ronca-Testoni S, Yu G et al (1994) Effect of ischemia and reperfusion on cardiac ryanodine receptors–sarcoplasmic reticulum Ca2+ channels. Circ Res 74:271–280

    PubMed  CAS  Google Scholar 

  37. Zucchi R, Yu G, Ghelardoni S et al (2001) A3 adenosine receptor stimulation modulates sarcoplasmic reticulum Ca(2+) release in rat heart. Cardiovasc Res 50:56–64

    PubMed  CAS  Google Scholar 

  38. Ikeda Y, Gohra H, Hamano K et al (2001) Effects of cardioplegic arrest and reperfusion on rabbit cardiac ryanodine receptors. Jpn Circ J 65:330–334

    PubMed  CAS  Google Scholar 

  39. Zucchi R, Ronca F, Ronca-Testoni S (2001) Modulation of sarcoplasmic reticulum function: a new strategy in cardioprotection? Pharmacol Ther 89:47–65

    PubMed  CAS  Google Scholar 

  40. Kukreja RC, Weaver AB, Hess ML (1989) Stimulated human neutrophils damage cardiac sarcoplasmic reticulum function by generation of oxidants. Biochim Biophys Acta 990:198–205

    PubMed  CAS  Google Scholar 

  41. Xu KY, Zweier JL, Becker LC (1997) Hydroxyl radical inhibits sarcoplasmic reticulum Ca(2+)-ATPase function by direct attack on the ATP binding site. Circ Res 80:76–81

    PubMed  CAS  Google Scholar 

  42. Sordahl LA, Stewart ML (1980) Mechanism(s) of altered mitochondrial calcium transport in acutely ischemic canine hearts. Circ Res 47:814–820

    PubMed  CAS  Google Scholar 

  43. Park Y, Kanekal S, Kehrer JP (1991) Oxidative changes in hypoxic rat heart tissue. Am J Physiol Heart Circ Physiol 260:H1395–H1405

    CAS  Google Scholar 

  44. Dixon IM, Eyolfson DA, Dhalla NS (1987) Sarcolemmal Na  +  −Ca2+ exchange activity in hearts subjected to hypoxia reoxygenation. Am J Physiol Heart Circ Physiol 253:H1026–H1034

    CAS  Google Scholar 

  45. Mouton R, Huisamen B, Lochner A (1991) The effect of ischaemia and reperfusion on sarcolemmal inositol phospholipid and cytosolic inositol phosphate metabolism in the isolated perfused rat heart. Mol Cell Biochem 105:127–135

    PubMed  CAS  Google Scholar 

  46. Dixon IM, Kaneko M, Hata T et al (1990) Alterations in cardiac membrane Ca2+ transport during oxidative stress. Mol Cell Biochem 99:125–135

    PubMed  CAS  Google Scholar 

  47. Samouilidou EC, Levis GM, Darsinos JT et al (1991) Effect of low calcium on high-energy phosphates and sarcolemmal Na+/K(+)-ATPase in the infarcted-reperfused heart. Biochim Biophys Acta 1070:343348

    Google Scholar 

  48. Venter H, Genade S, Mouton R et al (1991) Myocardial membrane cholesterol: effects of ischaemia. J Mol Cell Cardiol 23:1271–1286

    PubMed  CAS  Google Scholar 

  49. Andres J, Moczarska A, Stepkowski D, Kakol I (1991) Contractile proteins in globally “stunned” rabbit myocardium. Basic Res Cardiol 86:219–226

    PubMed  CAS  Google Scholar 

  50. Dhalla NS, Panagia V, Singal PK et al (1988) Alterations in heart membrane calcium transport during the development of ischemia-reperfusion injury. J Mol Cell Cardiol 20(Suppl 2):3–13

    PubMed  CAS  Google Scholar 

  51. Chohan PK, Singh RB, Dhalla NS, Netticadan T (2006) L-arginine administration recovers sarcoplasmic reticulum function in ischemic reperfused hearts by preventing calpain activation. Cardiovac Res 69:152–163

    CAS  Google Scholar 

  52. Hohl CM, Garleb AA, Altschuld RA (1992) Effects of simulated ischemia and reperfusion on the sarcoplasmic reticulum of digitonin-lysed cardiomyocytes. Circ Res 70:716–723

    PubMed  CAS  Google Scholar 

  53. Davis MD, Lebolt W, Feher JJ (1992) Reversibility of the effects of normothermic global ischemia on the ryanodine-sensitive and ryanodine-insensitive calcium uptake of cardiac sarcoplasmic reticulum. Circ Res 70:163–171

    PubMed  CAS  Google Scholar 

  54. Ostadal P, Elmoselhi AB, Zdobnicka I et al (2004) Role of oxidative stress in ischemia-reperfusion-induced changes in Na+, K(+)-ATPase isoform expression in rat heart. Antioxid Redox Signal 6:91932

    Google Scholar 

  55. Elmoselhi AB, Lukas A, Ostadal P, Dhalla NS (2003) Preconditioning attenuates ischemia-reperfusion-induced remodeling of Na  +  −K  +  −ATPase in hearts. Am J Physiol Heart Circ Physiol 285:H1055–1063

    PubMed  CAS  Google Scholar 

  56. Van Eyk JE, Powers F, Law W et al (1998) Breakdown and release of myofilament proteins during ischemia and ischemia/reperfusion in rat hearts: identification of degradation products and effects on the pCa-force relation. Circ Res 82:261–271

    PubMed  Google Scholar 

  57. Gao WD, Atar D, Liu Y et al (1997) Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res 80:393–399

    PubMed  CAS  Google Scholar 

  58. White MY, Cordwell SJ, McCarron HC et al (2003) Modifications of myosin-regulatory light chain correlate with function of stunned myocardium. J Mol Cell Cardiol 35:838–840

    Google Scholar 

  59. Foster DB, Noguchi T, VanBuren P et al (2003) C-terminal truncation of cardiac troponin I causes divergent effects on ATPase and force: implications for the pathophysiology of myocardial stunning. Circ Res 93:917–924

    PubMed  CAS  Google Scholar 

  60. Canton M, Neverova I, Menabò R et al (2004) Evidence of myofibrillar protein oxidation induced by postischemic reperfusion in isolated rat hearts. Am J Physiol Heart Circ Physiol 286:H870–H877

    PubMed  CAS  Google Scholar 

  61. Powell SR, Gurzenda EM, Wahezi SE (2001) Actin is oxidized during myocardial ischemia. Free Radic Biol Med 30:1171–1176

    PubMed  CAS  Google Scholar 

  62. Maddika S, Elimban V, Chapman D, Dhalla NS (2009) Role of oxidative stress in ischemia-reperfusion-induced alterations in myofibrillar ATPase activities and gene expression in the heart. Can J Physiol Pharmacol 87:120–129

    PubMed  CAS  Google Scholar 

  63. Ostadal P, Elmoselhi AB, Zdobnicka I et al (2003) Ischemia-reperfusion alters gene expression of Na  +  −K  +  ATPase isoforms in rat heart. Biochem Biophys Res Commun 306:457–462

    PubMed  CAS  Google Scholar 

  64. Saini HK, Dhalla NS (2005) Defective calcium handling in cardiomyocytes isolated from hearts subjected to ischemia-reperfusion. Am J Physiol Heart Circ Physiol 288:H2260–H2270

    PubMed  CAS  Google Scholar 

  65. Saini HK, Elimban V, Dhalla NS (2005) Attenuation of extracellular ATP response in cardiomyocytes isolated from hearts subjected to ischemia-reperfusion. Am J Physiol Heart Circ Physiol 289:H614–H623

    PubMed  CAS  Google Scholar 

  66. Flaherty JT, Weisfeldt ML (1988) Reperfusion injury. Free Radic Biol Med 5:409–419

    PubMed  CAS  Google Scholar 

  67. Arroyo CM, Kramer JH, Dickens BF, Weglicki WB (1987) Identification of free radicals in myocardial ischemia/reperfusion by spin trapping with nitrone DMPO. FEBS Lett 221:101–104

    PubMed  CAS  Google Scholar 

  68. Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 84:1404–1407

    PubMed  CAS  Google Scholar 

  69. Murphy JG, Smith TW, Marsh JD (1988) Mechanisms of reoxygenation-induced calcium overload in cultured chick embryo heart cells. Am J Physiol Heart Circ Physiol 254:H1133–1141

    CAS  Google Scholar 

  70. Nayler WG, Panagiotopoulos S, Elz JS, Daly MJ (1988) Calcium-mediated damage during post-ischemic reperfusion. J Mol Cell Cardiol 20(Suppl 2):41–54

    PubMed  CAS  Google Scholar 

  71. Billman GE, McIlroy B, Johnson JD (1991) Elevated myocardial calcium and its role in sudden cardiac death. FASEB J 5:2586–2592

    PubMed  CAS  Google Scholar 

  72. Lee JA, Allen DG (1991) Mechanisms of acute ischemic contractile failure of the heart. Role of intracellular calcium. J Clin Invest 88:361–367

    PubMed  CAS  Google Scholar 

  73. Saini-Chohan HK, Dhalla NS (2009) Attenuation of ischemia-reperfusion-induced alterations in intracellular Ca2+ in cardiomyocytes from hearts treated with N-acetylcysteine and N-mercaptopropionylglycine. Can J Physiol Pharmacol 87:1110–1119

    PubMed  CAS  Google Scholar 

  74. Meno H, Jarmakani JM, Philipson KD (1989) Effect of ischemia on sarcolemmal Na  +  −Ca2+ exchange in neonatal hearts. Am J Physiol Heart Circ Physiol 256:H1615–H1620

    CAS  Google Scholar 

  75. Kaneko M, Beamish RE, Dhalla NS (1989) Depression of heart sarcolemmal Ca2  +  −pump activity by oxygen free radicals. Am J Physiol Heart Circ Physiol 256:H368–H3674

    CAS  Google Scholar 

  76. Kaneko M, Elimban V, Dhalla NS (1989) Mechanism for depression of heart sarcolemmal Ca2+ pump by oxygen free radicals. Am J Physiol Heart Circ Physiol 257:H804–H811

    CAS  Google Scholar 

  77. Hata T, Kaneko M, Beamish RE, Dhalla NS (1991) Influence of oxygen free radicals on heart sarcolemmal Na+- Ca2+ exchange. Coron Artery Dis 2:397–407

    Google Scholar 

  78. Xie ZJ, Wang YH, Askari A et al (1990) Studies on the specificity of the effects of oxygen metabolites on cardiac sodium pump. J Mol Cell Cardiol 22:91920

    Google Scholar 

  79. Kramer JH, Mak IT, Weglicki WB (1984) Differential sensitivity of canine cardiac sarcolemmal and microsomal enzymes to inhibition by free radical-induced lipid peroxidation. Circ Res 55:120–124

    PubMed  CAS  Google Scholar 

  80. Kim MS, Akera T (1987) O2 free radicals: cause of ischemia-reperfusion injury to cardiac Na  +  −K  +  −ATPase. Am J Physiol Heart Circ Physiol 252:H252–H257

    CAS  Google Scholar 

  81. Kukreja RC, Weaver AB, Hess ML (1990) Sarcolemmal Na(+)-K(+)-ATPase: inactivation by neutrophil-derived free radicals and oxidants. Am J Physiol Heart Circ Physiol 259:H1330–H1336

    CAS  Google Scholar 

  82. Kaneko M, Panagia V, Paolillo G et al (1990) Inhibition of cardiac phosphatidylethanolamine N-methylation by oxygen free radicals. Biochim Biophys Acta 1021:33–38

    PubMed  CAS  Google Scholar 

  83. Kaneko M, Singal PK, Dhalla NS (1990) Alterations in heart sarcolemmal Ca2(+)-ATPase and Ca2(+)-binding activities due to oxygen free radicals. Basic Res Cardiol 85:45–54

    PubMed  CAS  Google Scholar 

  84. Musat S, Dhalla NS (1996) Alteration in cardiac sarcolemmal ATP receptors by oxyradicals. Ann N Y Acad Sci 793:1–12

    PubMed  CAS  Google Scholar 

  85. Kato K, Shao Q, Elimban V et al (1998) Mechanism of depression in cardiac sarcolemmal Na  +  −K  +  −ATPase by hypochlorous acid. Am J Physiol Cell Physiol 275:C826–C831

    CAS  Google Scholar 

  86. Shao Q, Matsubara T, Bhatt SK, Dhalla NS (1995) Inhibition of cardiac sarcolemma Na(+)-K  +  ATPase by oxyradical generating systems. Mol Cell Biochem 147:139–144

    PubMed  CAS  Google Scholar 

  87. Shattock MJ, Matsuura H (1993) Measurement of Na(+)-K  +  pump current in isolated rabbit ventricular myocytes using the whole-cell voltage-clamp technique. Inhibition of the pump by oxidant stress. Circ Res 72:91–101

    PubMed  CAS  Google Scholar 

  88. Askenasy N, Vivi A, Tassini M et al (2001) NMR spectroscopic characterization of sarcolemmal permeability during myocardial ischemia and reperfusion. J Mol Cell Cardiol 33:1421–1433

    PubMed  CAS  Google Scholar 

  89. Kyoi S, Otani H, Sumida T et al (2003) Loss of intracellular dystrophin: a potential mechanism for myocardial reperfusion injury. Circ J 67:725–727

    PubMed  Google Scholar 

  90. Asemu G, Tappia PS, Dhalla NS (2003) Identification of the changes in phospholipase C isozymes in ischemic-reperfused rat heart. Arch Biochem Biophys 411:174–182

    PubMed  CAS  Google Scholar 

  91. Asemu G, Dent M, Singal T et al (2005) Differential changes in phospholipase D and phosphatidate phosphohydrolase activities in ischemia-reperfusion of rat heart. Arch Biochem Biophys 436:136–144

    PubMed  CAS  Google Scholar 

  92. Munakata M, Stamm C, Friehs I et al (2002) Protective effects of protein kinase C during myocardial ischemia require activation of phosphatidyl-inositol specific phospholipase C. Ann Thorac Surg 73:1236–1245

    PubMed  Google Scholar 

  93. Hariharan N, Zhai P, Sedoshima J (2011) Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal 14:21792190

    Google Scholar 

  94. Makazan Z, Saini HK, Dhalla NS (2007) Role of oxidative stress in alterations of mitochondrial function in ischemic-reperfused hearts. Am J Physiol Heart Circ Physiol 292:H1986–H1994

    PubMed  CAS  Google Scholar 

  95. Ward CA, Moffat MP (1995) Role of protein kinase C in mediating effects of hydrogen peroxide in guinea-pig ventricular myocytes. J Mol Cell Cardiol 27:1089–1097

    PubMed  CAS  Google Scholar 

  96. Sabri A, Byron KL, Samarel AM et al (1998) Hydrogen peroxide activates mitogen-activated protein kinases and Na  +  −H  +  exchange in neonatal rat cardiac myocytes. Circ Res 82:1053–1062

    PubMed  CAS  Google Scholar 

  97. Yue TL, Ma XL, Wang X et al (1998) Possible involvement of stress-activated protein kinase signaling pathway and Fas receptor expression in prevention of ischemia/reperfusion-induced cardiomyocyte apoptosis by carvedilol. Circ Res 82:166–174

    PubMed  CAS  Google Scholar 

  98. Uecker M, Da Silva R, Grampp T et al (2003) Translocation of protein kinase C isoforms to subcellular targets in ischemic and anesthetic preconditioning. Anesthesiology 99:138–147

    PubMed  CAS  Google Scholar 

  99. Yoshida K, Hirata T, Akita Y et al (1996) Translocation of protein kinase C-alpha, delta and epsilon isoforms in ischemic rat heart. Biochim Biophys Acta 1317:36–44

    PubMed  Google Scholar 

  100. Schulz R, Dodge KL, Lopaschuk GD, Clanachan AS (1997) Peroxynitrite impairs cardiac contractile function by decreasing cardiac efficiency. Am J Physiol Heart Circ Physiol 272:H1212

    CAS  Google Scholar 

  101. Xie YW, Kaminski PM, Wolin MS (1998) Inhibition of rat cardiac muscle contraction and mitochondrial respiration by endogenous peroxynitrite formation during posthypoxic reoxygenation. Circ Res 82:891–897

    PubMed  CAS  Google Scholar 

  102. Singh RB, Dandekar SP, Elimban V et al (2004) Role of proteases in the pathophysiology of cardiac disease. Mol Cell Biochem 263:241–256

    PubMed  CAS  Google Scholar 

  103. Singh RB, Chohan PK, Dhalla NS, Netticadan T (2004) The sarcoplasmic reticulum proteins are targets for calpain action in the ischemic-reperfused heart. J Mol Cell Cardiol 37:101–110

    PubMed  CAS  Google Scholar 

  104. Schulz R (2007) Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Ann Rev Pharmacol Toxicol 47:211–242

    CAS  Google Scholar 

  105. Chow AK, Cena J, Schulz R (2007) Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br J Pharmacol 152:189–205

    PubMed  CAS  Google Scholar 

  106. Khalil PN, Neuhof C, Huss R et al (2005) Calpain inhibition reduces infarct size and improves global hemodynamics and left ventricular contractility in a porcine myocardial ischemia/reperfusion model. Eur J Pharmacol 528:124–131

    PubMed  CAS  Google Scholar 

  107. Urthaler F, Wolkowicz PE, Digerness SB et al (1997) MDL-28170, a membrane-permeant calpain inhibitor, attenuates stunning and PKC epsilon proteolysis in reperfused ferret hearts. Cardiovasc Res 35:60–67

    PubMed  CAS  Google Scholar 

  108. Pedrozo Z, Sanchez G, Torrealba N et al (2010) Calpains and proteasomes mediate degradation of ryanodine receptors in a model of cardiac ischemic reperfusion. Biochim Biophys Acta 1802:356–362

    PubMed  CAS  Google Scholar 

  109. French JP, Quindry JC, Falk DJ et al (2006) Ischemia-reperfusion-induced calpain activation and SERCA2a degradation are attenuated by exercise training and calpain inhibition. Am J Heart Circ Physiol 290:H128–H136

    CAS  Google Scholar 

  110. Singh RB, Elimban V, Dhalla NS (2008) Differences in ischemia-reperfusion-induced endothelial changes in hearts perfused at constant flow and constant pressure. J Appl Physiol 105:1779–1787

    PubMed  Google Scholar 

  111. Inserte J, Dorado-Garcia D, Hernando V, Soler-Soler J (2005) Calpain-mediated impairment of Na+/K  +  −ATPase activity during early reperfusion contributes to cell death after myocardial ischemia. Circ Res 97:465–473

    PubMed  CAS  Google Scholar 

  112. Inserte J, Dorado-Garcia D, Hernando V et al (2006) Ischemic preconditioning prevents calpain-mediated impairment of Na+/K  +  −ATPase activity during early reperfusion. Cardiovasc Res 70:364–373

    PubMed  CAS  Google Scholar 

  113. Yoshikawa Y, Zhang G-X, Obata K et al (2010) Cardioprotective effects of a novel calpain inhibitor SNJ-1945 for reperfusion injury after cardioplegic cardiac arrest. Am J Heart Circ Physiol 298:H643–H651

    CAS  Google Scholar 

  114. Singh RB, Dhalla NS (2010) Ischemia-reperfusion-induced changes in sarcolemmal Na+/K  +  −ATPase are due to the activation of calpain in the heart. Can J Physiol Pharmacol 88:388–397

    PubMed  CAS  Google Scholar 

  115. Lalu MM, Pasini E, Schulze CJ et al (2005) Ischaemia-reperfusion injury activates matrix metalloproteinases in the human heart. Eur Heart J 26:27–35

    PubMed  CAS  Google Scholar 

  116. Sawicki G, Leon H, Sawicka J et al (2005) Degradation of myosin light chain in isolated rat hearts subjected to ischemia-reperfusion injury: a new intracellular target for matrix metalloproteinase-2. Circulation 112:544–552

    PubMed  CAS  Google Scholar 

  117. Spanikova A, Ivanova M, Matejíková J et al (2010) Influence of ischemia/reperfusion and modulation of PI3K/Akt kinase pathway on matrix metalloproteinase-2 in rat hearts. Gen Physiol Biophys 29:31–40

    PubMed  CAS  Google Scholar 

  118. Kundasamy AD, Chow AK, Ali MA, Schulz R (2010) Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85:413–423

    Google Scholar 

  119. Murphy E, Steenbergen C (2007) Gender-based differences in mechanisms of protection in myocardial ischemia-reperfusion injury. Cardiovasc Res 75:478–486

    PubMed  CAS  Google Scholar 

  120. Ostadal B, Netuka I, Maly J et al (2009) Gender differences in cardiac ischemic injury and protection–experimental aspects. Exp Biol Med 234:1011–1019

    CAS  Google Scholar 

  121. Arain FA, Kuniyoshi FH, Abdalrhim AD, Miller VM (2009) Sex/gender medicine. The biological basis for personalized care in cardiovascular medicine. Circ J 73:1774–1782

    PubMed  Google Scholar 

  122. Mercuro G, Deidda M, Piras A et al (2010) Gender determinants of cardiovascular risk factors and diseases. J Cardiovasc Med 11:207–220

    Google Scholar 

  123. Banos G, Medina-Campos ON, Maldonado PD et al (2005) Antioxidant enzymes in hypertensive and hypertriglyceridemic rats: effect of gender. Clin Exp Hypertens 1:45–57

    Google Scholar 

  124. Safar ME, Smulyan H (2004) Hypertension in women. Am J Hypertens 17:82–87

    PubMed  Google Scholar 

  125. Regitz-Zagrosak V, Lehmkuhl E (2005) Heart failure and its treatment in women. Role of hypertension, diabetes, and estrogen. Herz 30:356–367

    Google Scholar 

  126. Belo N, Mosca L (2004) Epidemiology of coronary heart disease in women. Prog Cardiovasc Dis 4:287–295

    Google Scholar 

  127. Hoppe BL, Hermann DD (2003) Sex differences in the causes and natural history of heart failure. Curr Cardiol Rep 5:193–199

    PubMed  Google Scholar 

  128. Jessup M, Pina IL (2004) Is it important to examine gender differences in the epidemiology and outcome of severe heart failure? J Thor Cardiovasc Surg 127:1247–1252

    Google Scholar 

  129. Stromberg A, Martensson J (2003) Gender differences in patients with heart failure. Eur J Cardiovasc Nurs 2:7–18

    PubMed  Google Scholar 

  130. Schonfelder G (2005) The biological impact of estrogens on gender differences in congestive heart failure. Cardiovasc Res 67:573–574

    PubMed  Google Scholar 

  131. Biondi-Zoccai GGL, Baldi A, Biasucci LM, Abbate A (2004) Female gender, myocardial remodeling and cardiac failure: are women protected from increased myocardial apoptosis? Ital Heart J 5:498

    PubMed  Google Scholar 

  132. Solimene MC (2010) Coronary heart disease in women: a challenge for the 21st century. Clinics (Sao Paulo) 65:99–106

    Google Scholar 

  133. Campbell DJ, Somaratne JB, Jenkins AJ et al (2011) Differences in myocardial structure and coronary microvasculature between men and women with coronary artery disease. Hypertension 57:186–192

    PubMed  CAS  Google Scholar 

  134. Mackay MH, Ratner PA, Johnson JL et al (2011) Gender differences in symptoms of myocardial ischaemia. Eur Heart J 32:3107–3114

    PubMed  Google Scholar 

  135. Litwin SE, Katz SE et al (1999) Gender differences in postinfarction left ventricular remodeling. Cardiology 91:173–183

    PubMed  CAS  Google Scholar 

  136. Douglas PS, Katz SE et al (1998) Hypertrophic remodeling: gender differences in the early response to left ventricular pressure overload. J Am Coll Cardiol 32:1118

    PubMed  CAS  Google Scholar 

  137. Skavdahl M, Steenbergen C, Litwin CM et al (2005) Gender differences in postinfarction left ventricular remodeling. Am J Physiol Heart Circ Physiol 288:H469

    PubMed  CAS  Google Scholar 

  138. Alyono D, Ring WS, Anderson MR, Anderson RW (1984) Left ventricular adaptation to volume overload from large aortocaval fistula. Surgery 96:360–367

    PubMed  CAS  Google Scholar 

  139. Flaim SF, Minteer WJ, Nellis SH, Clark DP (1979) Chronic arteriovenous shunt: evaluation of a model for heart failure in rat. Am J Physiol Heart Circ Physiol 236:H698–H704

    CAS  Google Scholar 

  140. Gardner JD, Brower GL, Janicki JS (2002) Gender differences in cardiac remodeling secondary to chronic volume overload. J Cardiac Fail 8:101–107

    Google Scholar 

  141. Gardner JD, Brower GL, Voloshenyuk TG, Janicki JS (2008) Cardioprotection in female rats subjected to chronic volume overload: synergistic interaction of estrogen and phytoestrogens. Am J Physiol Heart Circ Physiol 294:H198–H204

    PubMed  CAS  Google Scholar 

  142. Gardner JD, Brower GL, Janicki JS (2005) Effects of dietary phytoestrogens on cardiac remodeling secondary to chronic volume overload in female rats. J App Physiol 99:1378–1383

    CAS  Google Scholar 

  143. Dent MR, Tappia PS, Dhalla NS (2010) Gender differences in cardiac dysfunction and remodeling due to volume overload. J Cardiac Fail 16:439–449, erratum: J Cardiac Fail 17: 179, 2011

    Google Scholar 

  144. Dent MR, Tappia PS, Dhalla NS (2010) Gender differences in apoptotic signaling in heart failure due to volume overload. Apoptosis 15:499–510, erratum: Apoptosis 16: 757, 2011

    PubMed  Google Scholar 

  145. Dent MR, Tappia PS, Dhalla NS (2011) Gender differences in β-adrenoceptor system in cardiac hypertrophy due to arteriovenous fistula. J Cell Physiol 226:181–186

    PubMed  CAS  Google Scholar 

  146. Dent MR, Tappia PS, Dhalla NS (2012) Gender related alterations of β-adrenoceptor mechanisms in heart failure due to arteriovenous fistula. J Cell Physiol 227:3080–3087

    PubMed  CAS  Google Scholar 

  147. Vlkovicova J, Javorkova V, Pechánová O, Vrbjar N (2005) Gender difference in functional properties of Na. K-ATPase in the heart of spontaneously hypertensive rats. Life Sci 76:971–982

    PubMed  CAS  Google Scholar 

  148. Chen J, Petranka J, Yamamura K et al (2003) Gender differences in sarcoplasmic reticulum calcium loading after isoproterenol. Am J Physiol Heart Circ Physiol 285:H2657–H2662

    PubMed  CAS  Google Scholar 

  149. Wei S-K, McCurley JM, Hanlon SU, Haigney MC (2007) Gender differences in Na/Ca exchanger current and beta-adrenergic responsiveness in heart failure in pig myocytes. Ann N Y Acad Sci 1099:183–189

    PubMed  CAS  Google Scholar 

  150. Brower GL, Gardner JD, Janicki JS (2003) Gender mediated cardiac protection from adverse ventricular remodeling is abolished by ovariectomy. Mol Cell Biochem 251:89–95

    PubMed  CAS  Google Scholar 

  151. Bhuiyan MS, Shioda N, Fukunaga K (2007) Ovariectomy augments pressure overload-induced hypertrophy associated with changes in Akt and nitric oxide synthase signaling pathways in female rats. Am J Physiol Endocrinol Metab 293:E1606–E1614

    PubMed  CAS  Google Scholar 

  152. Kam KW, Kravtsov GM, Liu J, Wong TM (2005) Increased PKA activity and its influence on isoprenaline-stimulated L-type Ca2+ channels in the heart from ovariectomized rats. Brit J Pharmacol 144:972–981

    CAS  Google Scholar 

  153. Kravtsov GM, Kam KW, Liu J et al (2007) Altered Ca(2+) handling by ryanodine receptor and Na(+)-Ca(2+) exchange in the heart from ovariectomized rats: role of protein kinase A. Am J Physiol Heart Circ Physiol 292:C1625–C1635

    CAS  Google Scholar 

  154. Bupha-Intr T, Wattanapermpool J (2006) Regulatory role of ovarian sex hormones in calcium uptake activity of cardiac sarcoplasmic reticulum. Am J Physiol Heart Circ Physiol 291:H1101–H1108

    PubMed  CAS  Google Scholar 

  155. Ma Y, Cheng WT, Wu S, Wong TM (2009) Oestrogen confers cardioprotection by suppressing Ca2+/calmodulin-dependent protein kinase II. Brit J Pharmacol 157:705–715

    CAS  Google Scholar 

  156. Kam KW, Qi JS, Chen M, Wong TM (2004) Estrogen reduces cardiac injury and expression of beta1-adrenoceptor upon ischemic insult in the rat heart. J Pharmacol Exp Ther 309:8–15

    PubMed  CAS  Google Scholar 

  157. Patten RD, Pourati I, Aronovitz MJ et al (2004) 17beta-estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling. Circ Res 95:692–699

    PubMed  CAS  Google Scholar 

  158. Marni F, Wang Y, Morishima M et al (2009) 17 beta-estradiol modulates expression of low-voltage-activated Ca(V)3.2 T-type calcium channel via extracellularly regulated kinase pathway in cardiomyocy. Endocrinology 150:879–888

    PubMed  CAS  Google Scholar 

  159. Chu SH, Goldspink P, Kowalski J et al (2006) Effect of estrogen on calcium-handling proteins, beta-adrenergic receptors, and function in rat heart. Life Sci 79:1257–1267

    PubMed  CAS  Google Scholar 

  160. Kilic A, Javadov S, Karmazyn M (2009) Estrogen exerts concentration-dependent pro-and anti-hypertrophic effects on adult cultured ventricular myocytes. Role of NHE-1 in estrogen-induced hypertrophy. J Mol Cell Cardiol 46:360–369

    PubMed  CAS  Google Scholar 

  161. Bae S, Zhang L (2005) Gender differences in cardioprotection against ischemia/reperfusion injury in adult rat hearts: focus on Akt and protein kinase C signaling. J Pharmacol Exp Ther 315:1125–1135

    PubMed  CAS  Google Scholar 

  162. Xue Q, Zhang L (2009) Prenatal hypoxia causes a sex-dependent increase in heart susceptibility to ischemia and reperfusion injury in adult male offspring: role of protein kinase C epsilon. J Pharamcol Exp Ther 330:624–632

    CAS  Google Scholar 

  163. Shinmura K, Nagai M, Tamaki K, Bolli R (2008) Loss of ischaemic preconditioning in ovariectomized rat hearts: possible involvement of impaired protein kinase C epsilon phosphorylation. Cardiovasc Res 79:387–394

    PubMed  CAS  Google Scholar 

  164. Cross HR, Lu L, Steenbergen C et al (1998) Overexpression of the cardiac Na+/Ca2+ exchanger increases susceptibility to ischemia/reperfusion injury in male, but not female, transgenic mice. Circ Res 83:1215–1223

    PubMed  CAS  Google Scholar 

  165. Cross HR, Murphy E, Steenbergen C (2002) Ca(2+) loading and adrenergic stimulation reveal male/female differences in susceptibility to ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 283:H481–H489

    PubMed  CAS  Google Scholar 

  166. Imahashi K, London RE, Steenbergen C, Murphy E (2004) Male/female differences in intracellular Na  +  regulation during ischemia/reperfusion in mouse heart. J Mol Cell Cardiol 37:747–753

    PubMed  CAS  Google Scholar 

  167. Brown DA, Lynch JM, Armstrong CJ et al (2005) Susceptibility of the heart to ischaemia-reperfusion injury and exercise-induced cardioprotection are sex-dependent in the rat. J Physiol 564:619–630

    PubMed  CAS  Google Scholar 

  168. Johnson MS, Moore RL, Brown DA (2006) Sex differences in myocardial infarct size are abolished by sarcolemmal KATP channel blockade in rat. Am J Physiol Heart Circ Physiol 290:H2644–H2647

    PubMed  CAS  Google Scholar 

  169. Arieli Y, Gursahani H, Eaton MM et al (2004) Gender modulation of Ca(2+) uptake in cardiac mitochondria. J Mol Cell Cardiol 37:507–513

    PubMed  CAS  Google Scholar 

  170. Wang M, Tsai BM, Crisostomo PR, Meldrum DR (2006) Tumor necrosis factor receptor 1 signaling resistance in the female myocardium during ischemia. Circulation 114(suppl I):I 282–I 289

    Google Scholar 

  171. Zeller CN, Wang Y, Markel TA et al (2009) Role of tumor necrosis factor receptor 1 in sex differences of stem cell mediated cardioprotection. Ann Thorac Surg 87:812–819

    PubMed  Google Scholar 

  172. Beer S, Reincke M, Kral M et al (2002) Susceptibility to cardiac ischemia/reperfusion injury is modulated by chronic estrogen status. J Cardiovasc Pharmacol 40:420–428

    PubMed  CAS  Google Scholar 

  173. Jeanes HL, Wanikiat P, Sharif I, Gray GA (2006) Medroxyprogesterone acetate inhibits the cardioprotective effect of estrogen in experimental ischemia-reperfusion injury. Menopause 13:80–86

    PubMed  Google Scholar 

  174. Chae S-U, Ha K-C, Piao CS et al (2007) Estrogen attenuates cardiac ischemia-reperfusion injury via inhibition of calpain-mediated bid cleavage. Arch Pharm Res 30:1225–1235

    PubMed  CAS  Google Scholar 

  175. Kim JK, Pedram A, Razandi M, Levin ER (2006) Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms. J Biol Chem 281:6760–6767

    PubMed  CAS  Google Scholar 

  176. Wang M, Tsai BM, Reiger KM et al (2006) 17-beta-Estradiol decreases p38 MAPK-mediated myocardial inflammation and dysfunction following acute ischemia. J Mol Cell Cardiol 40:205–212

    PubMed  CAS  Google Scholar 

  177. Wang F, He Q, Sun Y et al (2010) Female adult mouse cardiomyocytes are protected against oxidative stress. Hypertension 55:1172–1178

    PubMed  CAS  Google Scholar 

  178. Golden KL, Marsh JD, Jiang Y (2002) Castration reduces mRNA levels for calcium regulatory proteins in rat heart. Endocrine 19:339–344

    PubMed  CAS  Google Scholar 

  179. Golden KL, Marsh JD, Jiang Y et al (2003) Gonadectomy of adult male rats reduces contractility of isolated cardiac myocytes. Am J Physiol Endocrinol Metab 285:E449–E453

    PubMed  CAS  Google Scholar 

  180. Golden KL, Marsh JD, Jiang Y (2004) Testosterone regulates mRNA levels of calcium regulatory proteins in cardiac myocytes. Horm Metab Res 36:197–202

    PubMed  CAS  Google Scholar 

  181. Huang C, Gu H, Zhang W et al (2010) Testosterone-down-regulated Akt pathway during cardiac ischemia/reperfusion: a mechanism involving BAD, Bcl-2 and FOXO3a. J Surg Res 164:e1–11

    PubMed  CAS  Google Scholar 

  182. Tsang S, Wu S, Liu J, Wong TM (2008) Testosterone protects rat hearts against ischaemic insults by enhancing the effects of alpha(1)-adrenoceptor stimulation. Br J Pharmacol 153:693–709

    PubMed  CAS  Google Scholar 

  183. Wang M, Wang Y, Abarbanell A et al (2009) Both endogenous and exogenous testosterone decrease myocardial STAT3 activation and SOCS3 expression after acute ischemia and reperfusion. Surgery 146:138–144

    PubMed  Google Scholar 

Download references

Acknowledgments

The research reported in this chapter was supported by Canadian Institute of Health Research. Infrastructural support for the project was provided by the St. Boniface Hospital Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayan Elimban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dhalla, N.S., Elimban, V., Hryshko, L., Freed, D.H. (2013). Subcellular Remodeling and Cardiac Dysfunction Due to Ischemia–Reperfusion Injury. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_16

Download citation

Publish with us

Policies and ethics