Skip to main content

Therapeutic Induction of Apoptosis in Nasopharyngeal Carcinoma

  • Chapter
  • First Online:
Nasopharyngeal Carcinoma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 778))

  • 1021 Accesses

Abstract

Apoptosis is a mechanism of cell death that is pivotal for the maintenance of cellular homeostasis within the human body. Not surprisingly, mutations rendering cells resistant to apoptosis are acquired in virtually all cancers. A full understanding of such mutations is important for the development of clinically successful therapeutic strategies.

In nasopharyngeal carcinoma (NPC), inhibition of both receptor- and mitochondrial-mediated apoptosis is achieved through the inter-related expression of human and Epstein-Barr Virus (EBV) genes. In particular, the over-expression of NF-κB, mediated in part by EBV LMP1, may be the central mechanism leading to the expression of several anti-apoptotic genes, including survivin, Bfl-1, Bcl-2 and A20. This biological insight has already facilitated the development of several strategies to directly overcome apoptosis resistance, many of which aim to directly modify Bcl-2 family protein expression.

In this chapter, we will summarize the heretofore elucidated mechanisms of resistance to apoptosis in NPC. We will also examine therapeutic strategies directly targeting apoptosis in NPC that have been developed thus far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Green DR. Apoptotic pathways: ten minutes to dead. Cell 2005; 121:671–674.

    Article  CAS  PubMed  Google Scholar 

  2. Strasser A, Cory S, Adams JM. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J 2011; 30:3667–3683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reed JC. Apoptosis-targeted therapies for cancer. Cancer Cell 2003; 3:17–22.

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144:646–674.

    Article  CAS  PubMed  Google Scholar 

  5. Green DR, Evan GI. A matter of life and death. Cancer Cell 2002; 1:19–30.

    Article  CAS  PubMed  Google Scholar 

  6. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004; 5:897–907.

    Article  CAS  PubMed  Google Scholar 

  7. Lavrik I, Golks A, Krammer PH. Death receptor signaling. J Cell Sci 2005; 118:265–267.

    Article  CAS  PubMed  Google Scholar 

  8. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004; 305:626–629.

    Article  CAS  PubMed  Google Scholar 

  9. Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene 2008; 27:6398–6406.

    Article  CAS  PubMed  Google Scholar 

  10. Green DR, Kroemer G. Pharmacological manipulation of cell death: clinical applications in sight? J Clin Invest 2005; 115:2610–2617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001; 3:E255–E263.

    Article  CAS  PubMed  Google Scholar 

  12. Yu Y, Dong W, Li X et al. Significance of c-Myc and Bel-2 protein expression in nasopharyngeal carcinoma. Arch Otolaryngol Head Neck Surg 2003; 129:1322–1326.

    Article  PubMed  Google Scholar 

  13. Yip KW, Shi W, Pintilie M et al. Prognostic significance of the Epstein-Barr virus, p53, Bcl-2, and survivin in nasopharyngeal cancer. Clin Cancer Res 2006; 12:5726–5732.

    Article  CAS  PubMed  Google Scholar 

  14. Lu JJ, Chen CL, Hsu TY et al. Expression of Epstein-Barr virus latent membrane protein 1 and B-cell leukemia-lymphoma 2 gene in nasopharyngeal carcinoma tissues. J Microbiol Immunol Infect 2002; 35:136–140.

    CAS  PubMed  Google Scholar 

  15. Khabir A, Ghorbel A, Daoud J et al. Similar BCL-X but different BCL-2 levels in the two age groups of north African nasopharyngeal carcinomas. Cancer Detect Prev 2003; 27:250–255.

    Article  PubMed  Google Scholar 

  16. LuQL, EliaG, Lucas S et al. Bcl-2 proto-oncogene expression in Epstein-Barr-virus-associated nasopharyngeal carcinoma. Int J Cancer 1993; 53:29–35.

    Article  Google Scholar 

  17. Faqing T, Zhi H, Liqun Y et al. Epstein-Barr virus LMP1 initiates cell proliferation and apoptosis inhibition via regulating expression of Survivin in nasopharyngeal carcinoma. Exp Oncol 2005; 27:96–101.

    PubMed  Google Scholar 

  18. Xiang Y, Yao H, Wang S et al. Prognostic value of Survivin and Livin in nasopharyngeal carcinoma. The Laryngoscope 2006; 116:126–130.

    Article  CAS  PubMed  Google Scholar 

  19. Altieri DC. Validating survivin as a cancer therapeutic target. Nat Rev Cancer 2003; 3:46–54.

    Article  CAS  PubMed  Google Scholar 

  20. Ho SY, Guo HR, Chen HH et al. Prognostic implications of Fas-ligand expression in nasopharyngeal carcinoma. Head Neck 2004; 26:977–983.

    Article  PubMed  Google Scholar 

  21. Enami A, Tsutsumi K, Kobayashi T et al. Correlation between Fas/Fas-ligand expression and apoptosis in undifferentiated nasopharyngeal carcinoma. Nippon Jibiinkoka Gakkai Kaiho 2002; 105:1087–1092.

    Article  PubMed  Google Scholar 

  22. Li H, Wang J, Zeng Z et al. Expression and correlation of apoptosis-related gene C-IAP2 and caspase-4 in head and cervical undifferentiation squamous cell carcinoma. Lin Chuang Er Bi Yan Hou Ke Za Zhi 2003; 17:739–741.

    PubMed  Google Scholar 

  23. Tsai MH, Chow KC, Lin TY et al. Expression of Fas ligand in patients with evident skull base involvement of nasopharyngeal carcinoma. Oncol Rep 2002; 9:247–251.

    PubMed  Google Scholar 

  24. Sbih-Lammali F, Clausse B, Ardila-Osorio H et al. Control of apoptosis in Epstein Barr virus-positive nasopharyngeal carcinoma cells: opposite effects of CD95 and CD40 stimulation. Cancer Res 1999; 59:924–930.

    CAS  PubMed  Google Scholar 

  25. Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 2006; 6:909–923.

    Article  CAS  PubMed  Google Scholar 

  26. Shi W, Bastianutto C, Li A et al. Multiple dysregulated pathways in nasopharyngeal carcinoma revealed by gene expression profiling. Int J Cancer 2006; 119:2467–2475.

    Article  CAS  PubMed  Google Scholar 

  27. Khabir A, Sellami A, Sakka M et al. Contrasted frequencies of p53 accumulation in the two age groups of North African nasopharyngeal carcinomas. Clin Cancer Res 2000; 6:3932–3936.

    CAS  PubMed  Google Scholar 

  28. Chen MK, Lee HS, Chang JH et al. Expression of p53 protein and primary tumour volume in patients with nasopharyngeal carcinoma. J Otolaryngol 2004; 33:304–307.

    Article  PubMed  Google Scholar 

  29. Agaoglu FY, Dizdar Y, Dogan O et al. p53 overexpression in nasopharyngeal carcinoma. In Vivo 2004; 18:555–560.

    CAS  PubMed  Google Scholar 

  30. Sheu LF, Chen A, Meng CL et al. Analysis ofbcl-2 expression innormal, inflamed, dysplastic nasopharyngeal epithelia, and nasopharyngeal carcinoma: association with p53 expression. HumPathol 1997; 28:556–562.

    CAS  Google Scholar 

  31. Fan SQ, Ma J, Zhou J et al. Differential expression of Epstein-Barr virus-encoded RNA and several tumor-related genes in various types of nasopharyngeal epithelial lesions and nasopharyngeal carcinoma using tissue microarray analysis. Hum Pathol 2006; 37:593–605.

    Article  CAS  PubMed  Google Scholar 

  32. Kwong J, Lo KW, To KF et al. Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin Cancer Res 2002; 8:131–137.

    CAS  PubMed  Google Scholar 

  33. Crook T, Nicholls JM, Brooks L et al. High level expression of deltaN-p63: a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)? Oncogene 2000; 19:3439–3444.

    Article  CAS  PubMed  Google Scholar 

  34. el-Deiry WS, Tokino T, Velculescu VE et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75:817–825.

    Article  CAS  PubMed  Google Scholar 

  35. Kouvidou C, Kanavaros P, Papaioannou D et al. Expression of bcl-2 and p53 proteins in nasopharyngeal carcinoma. Absence of correlation with the presence of EBV encoded EBER1-2 transcripts and latent membrane protein-1. Clin Mol Pathol 1995; 48:M17–M22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin CS, Kuo HH, Chen JY et al. Epstein-barr virus nuclear antigen 2 retards cell growth, induces p21 (WAF1) expression, and modulates p53 activity posttranslationally. J Mol Biol 2000; 303:7–23.

    Article  CAS  PubMed  Google Scholar 

  37. Shi W, Pataki I, MacMillan C et al. Molecular pathology parameters in human nasopharyngeal carcinoma. Cancer 2002; 94:1997–2006.

    Article  CAS  PubMed  Google Scholar 

  38. Miller WE, Cheshire JL, Baldwin AS Jr et al. The NPC derived C15 LMP1 protein confers enhanced activation of NF-kappa B and induction of the EGFR in epithelial cells. Oncogene 1998; 16:1869–1877.

    Article  CAS  PubMed  Google Scholar 

  39. Morris MA, Dawson CW, Young LS. Role of the Epstein-Barr virus-encoded latent membrane protein-1, LMP1, in the pathogenesis of nasopharyngeal carcinoma. Future Oncol 2009; 5:811–825.

    Article  CAS  PubMed  Google Scholar 

  40. Tsao SW, Tramoutanis G, Dawson CW et al. The significance of LMP1 expression in nasopharyngeal carcinoma. Semin Cancer Biol 2002; 12:473–487.

    Article  CAS  PubMed  Google Scholar 

  41. Thornburg NJ, Pathmanathan R, Raab-Traub N. Activation of nuclear factor-kappaB p50 homodimer/Bcl-3 complexes in nasopharyngeal carcinoma. Cancer Res 2003; 63:8293–8301.

    CAS  PubMed  Google Scholar 

  42. Lo KW, Kwong J, Hui AB et al. High frequency of promoter hypermethylation of RAS SF1A in nasopharyngeal carcinoma. Cancer Res 2001; 61:3877–3881.

    CAS  PubMed  Google Scholar 

  43. Pan ZG, Kashuba VI, Liu XQ et al. High frequency somatic mutations in RASSF1A in nasopharyngeal carcinoma. Cancer Biol Ther 2005; 4:1116–1122.

    Article  CAS  PubMed  Google Scholar 

  44. Dammann R, Schagdarsurengin U, Strunnikova M et al. Epigenetic inactivation of the Ras-association domain family 1 (RASSF1A) gene and its function in human carcinogenesis. Histol Histopathol 2003; 18:665–677.

    CAS  PubMed  Google Scholar 

  45. Chow LS, Lam CW, Chan SY et al. Identification of RASSF1A modulated genes in nasopharyngeal carcinoma. Oncogene 2006; 25:310–316.

    Article  CAS  PubMed  Google Scholar 

  46. Kong WJ, Zhang S, Guo CK et al. Effect of methylation-associated silencing of the death-associated protein kinase gene on nasopharyngeal carcinoma. Anti-Cancer Drugs 2006; 17:251–259.

    Article  CAS  PubMed  Google Scholar 

  47. Chang HW, Chan A, Kwong DL et al. Evaluation of hypermethylated tumor suppressor genes as tumor markers in mouth and throat rinsing fluid, nasopharyngeal swab and peripheral blood of nasopharygeal carcinoma patient. Int J Cancer 2003; 105:851–855.

    Article  CAS  PubMed  Google Scholar 

  48. Wong TS, Chang HW, Tang KC et al. High frequency of promoter hypermethylation of the death-associated protein-kinase gene in nasopharyngeal carcinoma and its detection in the peripheral blood of patients. Clin Cancer Res 2002; 8:433–437.

    CAS  PubMed  Google Scholar 

  49. Tong JH, Tsang RK, Lo KW et al. Quantitative Epstein-Barr virus DNA analysis and detection of gene promoter hypermethylation in nasopharyngeal (NP) brushing samples from patients with NP carcinoma. Clin Cancer Res 2002; 8:2612–2619.

    CAS  PubMed  Google Scholar 

  50. Sriuranpong V, Mutirangura A, Gillespie JW et al. Global gene expression profile of nasopharyngeal carcinoma by laser capture microdissection and complementary DNA microarrays. Clin Cancer Res 2004; 10:4944–4958.

    Article  CAS  PubMed  Google Scholar 

  51. Xie L, Xu L, He Z et al. Identification of differentially expressed genes in nasopharyngeal carcinoma by means of the Atlas human cancer cDNA expression array. J Cancer Res Clin Oncol 2000; 126:400–406.

    Article  CAS  PubMed  Google Scholar 

  52. Fung LF, Lo AK, Yuen PW et al. Differential gene expression in nasopharyngeal carcinoma cells. Life Sci 2000; 67:923–936.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang B, Nie X, Xiao B et al. Identification of tissue-specific genes in nasopharyngeal epithelial tissue and differentially expressed genes in nasopharyngeal carcinoma by suppression subtractive hybridization and cDNA microarray. Genes Chromosomes Cancer 2003; 38:80–90.

    Article  CAS  PubMed  Google Scholar 

  54. Chang Y, Lee TC, Li JC et al. Differential expression of osteoblast-specific factor 2 and polymeric immunoglobulin receptor genes in nasopharyngeal carcinoma. Head Neck 2005; 27:873–882.

    Article  PubMed  Google Scholar 

  55. Lung HL, Bangarusamy DK, Xie D et al. THY1 is a candidate tumour suppressor gene with decreased expression in metastatic nasopharyngeal carcinoma. Oncogene 2005; 24:6525–6532.

    Article  CAS  PubMed  Google Scholar 

  56. Fang WY, Liu TF, Xie WB et al. Reexploring the possible roles of some genes associated with nasopharyngeal carcinoma using microarray-based detection. Acta biochimica et biophysica Sinica 2005; 37:541–546.

    Article  CAS  PubMed  Google Scholar 

  57. Huen DS, Henderson SA, Croom-Carter D et al. The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 1995; 10:549–560.

    CAS  PubMed  Google Scholar 

  58. Henderson S, Rowe M, Gregory C et al. Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 1991; 65:1107–1115.

    Article  CAS  PubMed  Google Scholar 

  59. Okan I, Wang Y, Chen F et al. The EBV-encoded LMP1 protein inhibits p53-triggered apoptosis but not growth arrest. Oncogene 1995; 11:1027–1031.

    CAS  PubMed  Google Scholar 

  60. Fries KL, Miller WE, Raab-Traub N. Epstein-Barr virus latent membrane protein 1 blocks p53-mediated apoptosis through the induction of the A20 gene. J Virol 1996; 70:8653–8659.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kawanishi M. The Epstein-Barr virus latent membrane protein 1 (LMP1) enhances TNF alpha-induced apoptosis of intestine 407 epithelial cells: the role of LMP1 C-terminal activation regions 1 and 2. Virology 2000; 270:258–266.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang X, Hu L, Fadeel B et al. Apoptosis modulation of Epstein-Barr virus-encoded latent membrane protein 1 in the epithelial cell line HeLa is stimulus-dependent. Virology 2002; 304:330–341.

    Article  CAS  PubMed  Google Scholar 

  63. Mosialos G, Birkenbach M, Yalamanchili R et al. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 1995; 80:389–399.

    Article  CAS  PubMed  Google Scholar 

  64. Vicat JM, Ardila-Osorio H, Khabir A et al. Apoptosis and TRAF-1 cleavage in Epstein-Barr virus-positive nasopharyngeal carcinoma cells treated with doxorubicin combined with a farnesyl-transferase inhibitor. Biochem Pharmacol 2003; 65:423–433.

    Article  CAS  PubMed  Google Scholar 

  65. Siegler G, Meyer B, Dawson C et al. Expression of tumor necrosis factor receptor-associated factor 1 in nasopharyngeal carcinoma: possible upregulation by Epstein-Barr virus latent membrane protein 1. Int J Cancer 2004; 112:265–272.

    Article  CAS  PubMed  Google Scholar 

  66. Leo E, Deveraux QL, Buchholtz C et al. TRAF1 is a substrate of caspases activated during tumor necrosis factor receptor-alpha-induced apoptosis. J Biol Chem 2001; 276:8087–8093.

    Article  CAS  PubMed  Google Scholar 

  67. Pearson GR, Luka J, Petti L et al. Identification of an Epstein-Barr virus early gene encoding a second component of the restricted early antigen complex. Virology 1987; 160:151–161.

    Article  CAS  PubMed  Google Scholar 

  68. Cleary ML, Smith SD, Sklar J. Cloning and structural analysis of cDNAs for bel-2 and a hybrid bcl-2/ immunoglobulin transcript resulting from the t(14;18) translocation. Cell 1986; 47:19–28.

    Article  CAS  PubMed  Google Scholar 

  69. Henderson S, Huen D, Rowe M et al. Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl -2, protects human B cells from programmed cell death. Proc Natl Acad Sci U S A 1993; 90:8479–8483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tarodi B, Subramanian T, Chinnadurai G. Epstein-Barr virus BHRF1 protein protects against cell death induced by DNA-damaging agents and heterologous viral infection. Virology 1994; 201:404–407.

    Article  CAS  PubMed  Google Scholar 

  71. Theodorakis P, D-Sa-Eipper C, Subramanian T et al. Unmasking of a proliferation-restraining activity of the anti-apoptosis protein EBV BHRF1. Oncogene 1996; 12:1707–1713.

    CAS  PubMed  Google Scholar 

  72. Foghsgaard L, Jaattela M. The ability of BHRF 1 to inhibit apoptosis is dependent on stimulus and cell type. J Virol 1997; 71:7509–7517.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kawanishi M. Regulation of apoptosis by the latent infection membrane protein 1 and the early protein BHRF1. Uirusu 1997; 47:89–97.

    Article  CAS  PubMed  Google Scholar 

  74. Huang Q, Petros AM, Virgin HW et al. Solution structure of the BHRF1 protein from Epstein-Barr virus, a homolog of human Bcl-2. J Mol Biol 2003; 332:1123–1130.

    Article  CAS  PubMed  Google Scholar 

  75. Li LY, Shih HM, Liu MY et al. The cellular protein PRA1 modulates the anti-apoptotic activity of Epstein-Barr virus BHRF1, a homologue of Bcl-2, through direct interaction. J Biol Chem 2001; 276:27354–27362.

    Article  CAS  PubMed  Google Scholar 

  76. Li LY, Liu MY, Shih HM et al. Human cellular protein VRK2 interacts specifically with Epstein-Barr virus BHRF1, a homologue of Bcl-2, and enhances cell survival. J Gen Virol 2006; 87:2869–2878.

    Article  CAS  PubMed  Google Scholar 

  77. Homer D, Lewis M, Farrell PJ. Novel hypotheses for the roles of EBNA-1 and BHRF1 in EBV-related cancers. Intervirology 1995; 38:195–205.

    Article  Google Scholar 

  78. Bellows DS, Howell M, Pearson C et al. Epstein-Barr virus BALF1 is a BCL-2-like antagonist of the herpesvirus antiapoptotic BCL-2 proteins. J Virol 2002; 76:2469–2479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cabras G, Decaussin G, Zeng Y et al. Epstein-Barr virus encoded BALF1 gene is transcribed in Burkitt’s lymphoma cell lines and in nasopharyngeal carcinoma’s biopsies. J Clin Virol 2005; 34:26–34.

    Article  CAS  PubMed  Google Scholar 

  80. Bouchier-Hayes L, Lartigue L, Newmeyer DD. Mitochondria: pharmacological manipulation of cell death. J Clin Invest 2005; 115:2640–2647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li JH, Chia M, Shi W et al. Tumor-targeted gene therapy for nasopharyngeal carcinoma. Cancer Res 2002; 62:171–178.

    CAS  PubMed  Google Scholar 

  82. Yip KW, Li A, Li JH et al. Potential utility of BimS as a novel apoptotic therapeutic molecule. Mol Ther 2004; 10:533–544.

    Article  CAS  PubMed  Google Scholar 

  83. Li H, Xie M, Xu G et al. Effect of transduction bax gene on experimental nasopharyngeal carcinoma. Zhonghua er bi yan hou ke za zhi 2001; 36:430–432.

    CAS  PubMed  Google Scholar 

  84. Yip KW, Mocanu JD, Au PY et al. Combination bcl-2 antisense and radiation therapy for nasopharyngeal cancer. Clin Cancer Res 2005; 11:8131–8144.

    Article  CAS  PubMed  Google Scholar 

  85. Lacy J, Loomis R, Grill S et al. Systemic Bcl-2 antisense oligodeoxynucleotide in combination with cisplatin cures EBV+ nasopharyngeal carcinoma xenografts in SCID mice. Int J Cancer 2006; 119:309–316.

    Article  CAS  PubMed  Google Scholar 

  86. Chen W, Lee Y, Wang H et al. Suppression of human nasopharyngeal carcinoma cell growth in nude mice by the wild-type p53 gene. J Cancer Res Clin Oncol 1992; 119:46–48.

    Article  CAS  PubMed  Google Scholar 

  87. Li JH, Li P, Klamut H et al. Cytotoxic effects of Ad5CMV-p53 expression in two human nasopharyngeal carcinoma cell lines. Clin Cancer Res 1997; 3:507–514.

    CAS  PubMed  Google Scholar 

  88. Li JH, Huang D, Sun BF et al. Efficacy of ionizing radiation combined with adenoviral p53 therapy in EBV-positive nasopharyngeal carcinoma. Int J Cancer 2000; 87:606–610.

    Article  CAS  PubMed  Google Scholar 

  89. Weinrib L, Li JH, Donovan J et al. Cisplatin chemotherapy plus adenoviral p53 gene therapy in EBV-positive and -negative nasopharyngeal carcinoma. Cancer Gene Ther 2001; 8:352–360.

    Article  CAS  PubMed  Google Scholar 

  90. Li JH, Lax SA, Kim J et al. The effects of combining ionizing radiation and adenoviral p53 therapy in nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 1999; 43:607–616.

    Article  CAS  PubMed  Google Scholar 

  91. Qi V, Weinrib L, Ma N et al. Adenoviral p53 gene therapy promotes heat-induced apoptosis in anasopharyngeal carcinoma cell line. Int J Hyperthermia 2001; 17:38–47.

    Article  CAS  PubMed  Google Scholar 

  92. Lax SA, Chia MC, Busson P et al. Adenovirus-p53 gene therapy in human nasopharyngeal carcinoma xenografts. Radiother Oncol 2001; 61:309–312.

    Article  CAS  PubMed  Google Scholar 

  93. Tsai ST, Fang SY, Jin YT et al. Analysis of the expression of Fas-L in nasopharyngeal carcinoma tissues. Oral Oncol 1999; 35:421–424.

    Article  CAS  PubMed  Google Scholar 

  94. Abdulkarim B, Sabri S, Deutsch E et al. Radiation-induced expression of functional Fas ligand in EBV-positive human nasopharyngeal carcinoma cells. Int J Cancer 2000; 86:229–237.

    Article  CAS  PubMed  Google Scholar 

  95. Li JH, Shi W, Chia M et al. Efficacy of targeted FasL innasopharyngeal carcinoma. Mol Ther 2003; 8:964–973.

    Article  CAS  PubMed  Google Scholar 

  96. Tanaka M, Itai T, Adachi M et al. Downregulation of Fas ligand by shedding. Nat Med 1998; 4:31–36.

    Article  CAS  PubMed  Google Scholar 

  97. Schneider P, Holler N, Bodmer JL et al. Conversion of membrane-bound Fas (CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 1998; 187:1205–1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tanaka M, Suda T, Yatomi T et al. Lethal effect of recombinant human Fas ligand in mice pretreated with Propionibacterium acnes. J Immunol 1997; 158:2303–2309.

    CAS  PubMed  Google Scholar 

  99. Carter BZ, Mak DH, Schober WD et al. Regulation of survivin expression through Bcr-Abl/MAPK cascade: targeting survivin overcomes imatinib resistance and increases imatinib sensitivity in imatinib-responsive CML cells. Blood 2006; 107:1555–1563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Miller G, Lipman M. Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proc Natl Acad Sci USA 1973; 70:190–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mei YP, Zhu XF, Zhou JM et al. siRNA targeting LMP1-induced apoptosis in EBV-positive lymphoma cells is associated with inhibition of telomerase activity and expression. Cancer Lett 2006; 232:189–198.

    Article  CAS  PubMed  Google Scholar 

  102. Yip KW, Mao X, Au PY et al. Benzethonium chloride: a novel anticancer agent identified by using a cell-based small-molecule screen. Clin Cancer Res 2006; 12:5557–5569.

    Article  CAS  PubMed  Google Scholar 

  103. Yip KW, Ito E, Mao X et al. Potential use of alexidine dihydrochloride as an apoptosis-promoting anticancer agent. Mol Cancer Ther 2006; 5:2234–2240.

    Article  CAS  PubMed  Google Scholar 

  104. Razak AR, Siu LL, Liu FF et al. Nasopharyngeal carcinoma: the next challenges. Eur J Cancer 2010; 46:1967–1978.

    Article  PubMed  Google Scholar 

  105. Thornburg NJ, Raab-Traub N. Induction of epidermal growth factor receptor expression by Epstein-Barr virus latent membrane protein 1C-terminal-activating region 1 is mediated by NF-kappaB p50 homodimer/ Bcl-3 complexes. J Virol 2007; 81:12954–12961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hui AB, Yue S, Shi W et al. Therapeutic efficacy of seliciclib in combination with ionizing radiation for human nasopharyngeal carcinoma. Clin Cancer Res 2009; 15:3716–3724.

    Article  CAS  PubMed  Google Scholar 

  107. Sung FL, Poon TC, Hui EP et al. Antitumor effect and enhancement of cytotoxic drug activity by cetuximab in nasopharyngeal carcinoma cells. In Vivo 2005; 19:237–245.

    CAS  PubMed  Google Scholar 

  108. Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin Cancer Res 2006; 12:3657–3660.

    Article  CAS  PubMed  Google Scholar 

  109. Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 2000; 92:1210–1216.

    Article  CAS  PubMed  Google Scholar 

  110. Gleave ME, Monia BP. Antisense therapy for cancer. Nat Rev Cancer 2005; 5:468–479.

    Article  CAS  PubMed  Google Scholar 

  111. Soutschek J, Akinc A, Bramlage B et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004; 432:173–178.

    Article  CAS  PubMed  Google Scholar 

  112. Oltersdorf T, Elmore SW, Shoemaker AR et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435:677–681.

    Article  CAS  PubMed  Google Scholar 

  113. Zhai D, Jin C, Satterthwait AC et al. Comparison of chemical inhibitors of antiapoptotic Bcl-2-family proteins. Cell Death Differ 2006; 13:1419–1421.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bastianutto, C., Yip, K., Hui, A., Ito, E., Liu, FF. (2013). Therapeutic Induction of Apoptosis in Nasopharyngeal Carcinoma. In: Busson, P. (eds) Nasopharyngeal Carcinoma. Advances in Experimental Medicine and Biology, vol 778. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5947-7_12

Download citation

Publish with us

Policies and ethics