Skip to main content

An Exposure–Response Threshold for Lung Diseases Caused by Crystalline Silica

  • Chapter
  • First Online:
Improving Risk Analysis

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 185))

  • 2033 Accesses

Abstract

This chapter further develops the concept of dose–response thresholds for exposure-related lung diseases, using crystalline silica as an example. It also discusses epidemiological evidence as well as biological evidence. For the sake of practitioners who may care more about such specific applications than about the more general theoretical framework of the preceding two chapters, this chapter is self-contained; it briefly summarizes the relevant biology and the alternative basins-of-attraction modeling framework as they apply specifically to crystalline silica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Absher MP, Trombley L, Hemenway DR, Mickey RM, Leslie KO (1989) Biphasic cellular and tissue response of rat lungs after eight-day aerosol exposure to the silicon dioxide cristobalite. Am J Pathol 134(6):1243–1251

    Google Scholar 

  • Amabile JC, Leuraud K, Vacquier B, Caër-Lorho S, Acker A, Laurier D (2009) Multifactorial study of the risk of lung cancer among French uranium miners: radon, smoking and silicosis. Health Phys 97(6):613–621

    Article  Google Scholar 

  • American Thoracic Society (1997) Adverse effects of crystalline silica exposure. Am J Respir Crit Care Med 155(2):761–768

    Google Scholar 

  • Antognelli C, Gambelunghe A, Del Buono C, Murgia N, Talesa VN, Muzi G (2009) Crystalline silica Min-U-Sil 5 induces oxidative stress in human bronchial epithelial cells BEAS-2B by reducing the efficiency of antiglycation and antioxidant enzymatic defenses. Chem Biol Interact 182(1):13–21

    Article  Google Scholar 

  • Azad N, Rojanasakul Y, Vallyathan V (2008) Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev 11(1):1–15, http://pdfserve.informaworld.com/643704__789269849.pdf

    Article  Google Scholar 

  • Blanco D, Vicent S, Fraga MF, Fernandez-Garcia I, Freire J, Lujambio A, Esteller M, Ortiz-de-Solorzano C, Pio R, Lecanda F, Montuenga LM (2007) Molecular analysis of a multistep lung cancer model induced by chronic inflammation reveals epigenetic regulation of p16 and activation of the DNA damage response pathway. Neoplasia 9(10):840–852

    Article  Google Scholar 

  • Brown T (2009) Silica exposure, smoking, silicosis and lung cancer–complex interactions. Occup Med (Lond) 59(2):89–95

    Article  Google Scholar 

  • Carroll RJ, Chen X, Hu Y (2010) Identification and estimation of nonlinear models using two samples with nonclassical measurement errors. J Nonparametr Stat (Print) 22(4):379–399

    Article  Google Scholar 

  • Cassidy A, Mannetje A't, van Tongeren M, Field JK, Zaridze D, Szeszenia-Dabrowska N, Rudnai P, Lissowska J, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, Fevotte J, Fletcher T, Brennan P, Boffetta P (2007) Occupational exposure to crystalline silica and risk of lung cancer: a multicenter case–control study in Europe. Epidemiology 18(1):36–43

    Article  Google Scholar 

  • Castranova V (2004) Signaling pathways controlling the production of inflammatory mediators in response to crystalline silica exposure: role of reactive oxygen/nitrogen species. Free Radic Biol Med 37(7):916–925

    Article  Google Scholar 

  • Chen W, Bochmann F, Sun Y (2007) Effects of work related confounders on the association between silica exposure and lung cancer: a nested case–control study among Chinese miners and pottery workers. Int Arch Occup Environ Health 80(4):320–326

    Article  Google Scholar 

  • Cheng D, Branscum AJ, Stamey JD (2010) Accounting for response misclassification and covariate measurement error improves power and reduces bias in epidemiologic studies. Ann Epidemiol 20(7):562–567

    Article  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762

    Article  Google Scholar 

  • Cocco P, Dosemeci M, Rice C (2007) Lung cancer among silica-exposed workers: the quest for truth between chance and necessity. Med Lav 98(1):3–17

    Google Scholar 

  • Comhair SA, Erzurum SC (2002) Antioxidant responses to oxidant-mediated lung diseases. Am J Physiol Lung Cell Mol Physiol 283(2):L246–L255

    Google Scholar 

  • Corvol H, Flamein F, Epaud R, Clement A, Guillot L (2009) Lung alveolar epithelium and interstitial lung disease. Int J Biochem Cell Biol 41(8–9):1643–1651

    Article  Google Scholar 

  • Cox LA Jr (2009a) Could removing arsenic from tobacco smoke significantly reduce smoker risks of lung cancer? Risk Anal 29(1):3–17

    Article  Google Scholar 

  • Cox LA Jr (2009b) Risk analysis of complex and uncertain systems. Springer, New York, Chapter 13. www.springerlink.com/content/jn57472874131283/

    Book  Google Scholar 

  • Cox LA (2010) A causal model of chronic obstructive pulmonary disease (COPD) risk. Risk Anal (in press) http://www.ncbi.nlm.nih.gov/pubmed/20846171

  • D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8(10):813–824

    Article  Google Scholar 

  • Delgado L, Parra ER, Capelozzi VL (2006) Apoptosis and extracellular matrix remodelling in human silicosis. Histopathology 49(3):283–289

    Article  Google Scholar 

  • Ding M, Shi X, Castranova V, Vallyathan V (2000) Predisposing factors in occupational lung cancer: inorganic minerals and chromium. J Environ Pathol Toxicol Oncol 19(1–2):129–138

    Google Scholar 

  • Donaldson K, Borm PJ, Oberdorster G, Pinkerton KE, Stone V, Tran CL (2008) Concordance between in vitro and in vivo dosimetry in the proinflammatory effects of low-toxicity, low-solubility particles: the key role of the proximal alveolar region. Inhal Toxicol 20(1):53–62

    Article  Google Scholar 

  • Elizegi E, Pino I, Vicent S, Blanco D, Saffiotti U, Montuenga LM (2001) Hyperplasia of alveolar neuroendocrine cells in rat lung carcinogenesis by silica with selective expression of proadrenomedullin-derived peptides and amidating enzymes. Lab Invest 81(12):1627–1638

    Article  Google Scholar 

  • Eom HJ, Choi J (2009) Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B. Toxicol In Vitro 23(7):1326–1332

    Article  Google Scholar 

  • Erren TC, Glende CB, Morfeld P, Piekarski C (2009) Is exposure to silica associated with lung cancer in the absence of silicosis? A meta-analytical approach to an important public health question. Int Arch Occup Environ Health 82(8):997–1004

    Article  Google Scholar 

  • Fubini B, Hubbard A (2003) Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med 34(12):1507–1516

    Article  Google Scholar 

  • Gossart S, Cambon C, Orfila C, Séguélas MH, Lepert JC, Rami J, Carré P, Pipy B (1996) Reactive oxygen intermediates as regulators of TNF-alpha production in rat lung inflammation induced by silica. J Immunol 156(4):1540–1548

    Google Scholar 

  • Gulumian M, Borm PJ, Vallyathan V, Castranova V, Donaldson K, Nelson G, Murray J (2006) Mechanistically identified suitable biomarkers of exposure, effect, and susceptibility for silicosis and coal-worker’s pneumoconiosis: a comprehensive review. J Toxicol Environ Health B Crit Rev 9(5):357–395

    Article  Google Scholar 

  • Guo RF, Ward PA (2007) Role of oxidants in lung injury during sepsis. Antioxid Redox Signal 9(11):1991–2002

    Article  Google Scholar 

  • Hildemann S, Hammer C, Krombach F (1992) Heterogeneity of alveolar macrophages in experimental silicosis. Environ Health Perspect 97:53–57

    Article  Google Scholar 

  • Huaux F (2007) New developments in the understanding of immunology in silicosis. Curr Opin Allergy Clin Immunol 7(2):168–173

    Article  Google Scholar 

  • IARC (1997) IARC monographs on the evaluation of carcinogenic risks to humans, Vol. 68. Silica, some silicates, coal dust and para-aramid fibrils, Lyon. http://monographs.iarc.fr/ENG/Monographs/vol68/volume68.pdf

  • Janssen YM, Marsh JP, Absher MP, Hemenway D, Vacek PM, Leslie KO, Borm PJ, Mossman BT (1992) Expression of antioxidant enzymes in rat lungs after inhalation of asbestos or silica. J Biol Chem 267(15):10625–10630

    Google Scholar 

  • Ke Q, Li J, Ding J, Ding M, Wang L, Liu B, Costa M, Huang C (2006) Essential role of ROS-mediated NFAT activation in TNF-alpha induction by crystalline silica exposure. Am J Physiol Lung Cell Mol Physiol 291(2):L257–L264

    Article  Google Scholar 

  • Kim S, Nadel JA (2004) Role of neutrophils in mucus hypersecretion in COPD and implications for therapy. Treat Respir Med 3(3):147–159

    Article  Google Scholar 

  • Kisseleva T, Brenner DA (2008) Fibrogenesis of parenchymal organs. Proc Am Thorac Soc 5(3):338–342

    Article  Google Scholar 

  • Klein AK, Christopher JP (1995) Evaluation of crystalline silica as a threshold carcinogen. Scand J Work Environ Health 21(suppl 2):95–98, http://www.sjweh.fi/show_issue.php?issue_id=8

    Google Scholar 

  • Knaapen AM, Borm PJ, Albrecht C, Schins RP (2004) Inhaled particles and lung cancer part a: mechanisms. Int J Cancer 109(6):799–809

    Article  Google Scholar 

  • Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133(6):1019–1031

    Article  Google Scholar 

  • Kurihara N, Wada O (2004) Silicosis and smoking strongly increase lung cancer risk in silica-exposed workers. Ind Health 42(3):303–314

    Article  Google Scholar 

  • Lacasse Y, Martin S, Gagné D, Lakhal L (2009) Dose–response meta-analysis of silica and lung cancer. Cancer Causes Control 20(6):925–933

    Article  Google Scholar 

  • Leigh J, Wang H, Bonin A, Peters M, Ruan X (1997) Silica-induced apoptosis in alveolar and granulomatous cells in vivo. Environ Health Perspect 105(Suppl 5):1241–1245

    Article  Google Scholar 

  • Liu B, Chen Y, St Clair DK (2008) ROS and p53: a versatile partnership. Free Radic Biol Med 44(8):1529–1535

    Article  Google Scholar 

  • Lu C, Lyles RH (2008) Misclassification adjustment in threshold models for the effects of subject-specific exposure means and variances. In: Proceedings of the joint statistical meeting, 2008, Alexandria. http://www.amstat.org/sections/srms/proceedings/y2008/Files/302008.pdf

  • MacNee W (2005) Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2(1):50–60

    Article  Google Scholar 

  • Montuschi P, Collins JV, Ciabattoni G, Lazzeri N, Corradi M, Kharitonov SA, Barnes PJ (2000) Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am J Respir Crit Care Med 162(3 Pt 1):1175–1177

    Google Scholar 

  • Mortaz E, Kraneveld AD, Smit JJ, Kool M, Lambrecht BN, Kunkel SL, Lukacs NW, Nijkamp FP, Folkerts G (2009) Effect of cigarette smoke extract on dendritic cells and their impact on T-cell proliferation. PLoS One 4(3):e4946

    Article  Google Scholar 

  • Mossman BT (2000) Mechanisms of action of poorly soluble particulates in overload-related lung pathology. Inhal Toxicol 12(1–2):141–148

    Article  Google Scholar 

  • Oberdörster G (2002) Toxicokinetics and effects of fibrous and nonfibrous particles. Inhal Toxicol 14(1):29–56

    Article  Google Scholar 

  • Pease JE, Sabroe I (2002) The role of interleukin-8 and its receptors in inflammatory lung disease: implications for therapy. Am J Respir Med 1(1):19–25

    Article  Google Scholar 

  • Pelclová D, Fenclová Z, Kacer P, Kuzma M, Navrátil T, Lebedová J (2008) Increased 8-isoprostane, a marker of oxidative stress in exhaled breath condensate in subjects with asbestos exposure. Ind Health 46(5):484–489

    Article  Google Scholar 

  • Pelucchi C, Pira E, Piolatto G, Coggiola M, Carta P, La Vecchia C (2006) Occupational silica exposure and lung cancer risk: a review of epidemiological studies 1996–2005. Ann Oncol 17(7):1039–1050

    Article  Google Scholar 

  • Porter DW, Hubbs AF, Mercer R, Robinson VA, Ramsey D, McLaurin J, Khan A, Battelli L, Brumbaugh K, Teass A, Castranova V (2004) Progression of lung inflammation and damage in rats after cessation of silica inhalation. Toxicol Sci 79(2):370–380

    Article  Google Scholar 

  • Porter DW, Millecchia LL, Willard P, Robinson VA, Ramsey D, McLaurin J, Khan A, Brumbaugh K, Beighley CM, Teass A, Castranova V (2006) Nitric oxide and reactive oxygen species production causes progressive damage in rats after cessation of silica inhalation. Toxicol Sci 90(1):188–197

    Article  Google Scholar 

  • Richardson DB (2010) Occupational exposures and lung cancer: adjustment for unmeasured confounding by smoking. Epidemiology 21(2):181–186

    Article  Google Scholar 

  • Rimal B, Greenberg AK, Rom WN (2005) Basic pathogenetic mechanisms in silicosis: current understanding. Curr Opin Pulm Med 11(2):169–173

    Article  Google Scholar 

  • Rushton L (2007) Chronic obstructive pulmonary disease and occupational exposure to silica. Rev Environ Health 22(4):255–272

    Article  Google Scholar 

  • Saffiotti U (2005) Silicosis and lung cancer: a fifty-year perspective. Acta Biomed 76(Suppl 2):30–37

    Google Scholar 

  • Schins RP, Knaapen AM (2007) Genotoxicity of poorly soluble particles. Inhal Toxicol 19(Suppl 1):189–198

    Article  Google Scholar 

  • Scholz H, Yndestad A, Damås JK, Waehre T, Tonstad S, Aukrust P, Halvorsen B (2003) 8-isoprostane increases expression of interleukin-8 in human macrophages through activation of mitogen-activated protein kinases. Cardiovasc Res 59(4):945–954

    Article  Google Scholar 

  • Schulz C, Krätzel K, Wolf K, Schroll S, Köhler M, Pfeifer M (2004) Activation of bronchial epithelial cells in smokers without airway obstruction and patients with COPD. Chest 125(5):1706–1713

    Article  Google Scholar 

  • Shi X, Castranova V, Halliwell B, Vallyathan V (1998) Reactive oxygen species and silica-induced carcinogenesis. J Toxicol Environ Health B Crit Rev 1(3):181–197

    Article  Google Scholar 

  • Shi X, Ding M, Chen F, Wang L, Rojanasakul Y, Vallyathan V, Castranova V (2001) Reactive oxygen species and molecular mechanism of silica-induced lung injury. J Environ Pathol Toxicol Oncol 20(Suppl 1):85–93

    Google Scholar 

  • Smart SJ, Casale TB (1994) TNF-alpha-induced transendothelial neutrophil migration is IL-8 dependent. Am J Physiol 266(3 Pt 1):L238–L245

    Google Scholar 

  • Soutar CA, Robertson A, Miller BG, Searl A, Bignon J (2000) Epidemiological evidence on the carcinogenicity of silica: factors in scientific judgement. Ann Occup Hyg 44(1):3–14

    Google Scholar 

  • Srivastava KD, Rom WN, Jagirdar J, Yie TA, Gordon T, Tchou-Wong KM (2002) Crucial role of interleukin-1beta and nitric oxide synthase in silica-induced inflammation and apoptosis in mice. Am J Respir Crit Care Med 165(4):527–533

    Google Scholar 

  • Stayner L (2007) Silica and lung cancer: when is enough evidence enough? Epidemiology 18(1):23–24

    Article  Google Scholar 

  • Steenland K, Greenland S (2004) Monte Carlo sensitivity analysis and Bayesian analysis of smoking as an unmeasured confounder in a study of silica and lung cancer. Am J Epidemiol 160(4):384–392

    Article  Google Scholar 

  • Steenland K, Mannetje A, Boffetta P, Stayner L, Attfield M, Chen J, Dosemeci M, DeKlerk N, Hnizdo E, Koskela R, Checkoway H, International Agency for Research on Cancer (2001) Pooled exposure-response analyses and risk assessment for lung cancer in 10 cohorts of silica-exposed workers: an IARC multicentre study. Cancer Causes Control 12(9):773–784, Review. Erratum in: Cancer Causes Control 2002 Oct;13(8):777

    Article  Google Scholar 

  • Takami M, Terry V, Petruzzelli L (2002) Signaling pathways involved in IL-8-dependent activation of adhesion through Mac-1. J Immunol 168(9):4559–4566

    Google Scholar 

  • Thakur SA, Beamer CA, Migliaccio CT, Holian A (2009) Critical role of MARCO in crystalline silica-induced pulmonary inflammation. Toxicol Sci 108(2):462–471

    Article  Google Scholar 

  • Thatcher TH, McHugh NA, Egan RW, Chapman RW, Hey JA, Turner CK, Redonnet MR, Seweryniak KE, Sime PJ, Phipps RP (2005) Role of CXCR2 in cigarette smoke-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 289(2):L322–L328

    Article  Google Scholar 

  • Umemura S, Fujimoto N, Hiraki A, Gemba K, Takigawa N, Fujiwara K, Fujii M, Umemura H, Satoh M, Tabata M, Ueoka H, Kiura K, Kishimoto T, Tanimoto M (2008) Aberrant promoter hypermethylation in serum DNA from patients with silicosis. Carcinogenesis 29(9):1845–1849

    Article  Google Scholar 

  • Vacek PM, Verma DK, Graham WG, Callas PW, Gibbs GW (2010) Mortality in Vermont granite workers and its association with silica exposure. Occup Environ Med 68(5):312–318

    Article  Google Scholar 

  • van Berlo D, Knaapen AM, van Schooten FJ, Schins RP, Albrecht C (2010) NF-kappaB dependent and independent mechanisms of quartz-induced proinflammatory activation of lung epithelial cells. Part Fibre Toxicol 7:13

    Article  Google Scholar 

  • Veierød MB, Laake P (2001) Exposure misclassification: bias in category specific Poisson regression coefficients. Stat Med 20(5):771–784

    Article  Google Scholar 

  • Vida S, Pintos J, Parent ME, Lavoué J, Siemiatycki J (2010) Occupational exposure to silica and lung cancer: pooled analysis of two case–control studies in Montreal, Canada. Cancer Epidemiol Biomarkers Prev 19(6):1602–1611

    Article  Google Scholar 

  • Williams AO, Saffiotti U (1995) Transforming growth factor beta1, ras and p53 in silica-induced fibrogenesis and carcinogenesis. Scand J Work Environ Health 21(Suppl 2):30–34

    Google Scholar 

  • Williams AO, Flanders KC, Saffiotti U (1993) Immunohistochemical localization of transforming growth factor-beta 1 in rats with experimental silicosis, alveolar type II hyperplasia, and lung cancer. Am J Pathol 142(6):1831–1840

    Google Scholar 

  • Zhang DD, Hartsky MA, Warheit DB (2002) Time course of quartz and TiO(2) particle-induced pulmonary inflammation and neutrophil apoptotic responses in rats. Exp Lung Res 28(8):641–670

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Louis Anthony Cox, Jr

About this chapter

Cite this chapter

Cox, L.A. (2012). An Exposure–Response Threshold for Lung Diseases Caused by Crystalline Silica. In: Improving Risk Analysis. International Series in Operations Research & Management Science, vol 185. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6058-9_11

Download citation

Publish with us

Policies and ethics