Skip to main content

Photon Migration in Tissue

  • Chapter
  • First Online:
Application of Near Infrared Spectroscopy in Biomedicine

Part of the book series: Handbook of Modern Biophysics ((HBBT,volume 4))

Abstract

Although many researchers have attempted to determine the absolute value of tissue oxygenation using near infrared spectroscopy (NIRS): time-resolved spectroscopy, spatially resolved spectroscopy (SRS), phase-modulated spectroscopy, and continuous-wave spectroscopy (CWS), correction methods are still necessary for quantitative measurement. Overlying tissues, such as skulls and subcutaneous adipose tissues, can greatly affect the measurement sensitivity and accuracy. Therefore, analysis of photon migration is important in obtaining accurate absolute measurements. Several researchers have derived equations for the temporal and spatial dependence of diffusely reflected light in a turbid medium. Analytical solutions of diffusion theory are widely used to quantify the optical properties of homogeneous media. Propagation in a two-layered medium using a diffusion theory and Monte Carlo methods are frequently used to simulate photon migration. Various models are also used to simulate actual tissue structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chandraseklar S (1960) Radiative transfer. Dover, New York

    Google Scholar 

  2. Ishimaru A (1978) Diffusion of a pulse in densely distributed scatterers. J Opt Soc Am 68:1045–1050

    Article  Google Scholar 

  3. Takatani S, Graham MD (1979) Theoretical analysis of diffuse reflectance from a two-layer tissue model. IEEE Trans Biomed Eng BME26:656–664

    Article  Google Scholar 

  4. Patterson MS, Chance B, Wilson BC (1989) Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties. Appl Opt 28:2331–2336

    Article  PubMed  CAS  Google Scholar 

  5. Dayan I, Havlin S, Weiss GH (1992) Photon migration in a two-layer turbid media: a diffusion analysis. J Mod Opt 39:1567–1582

    Article  Google Scholar 

  6. Farrell TJ, Patterson MS (1992) A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med Phys 19:879–888

    Article  PubMed  CAS  Google Scholar 

  7. Haskell RC, Svaasand LO, Tsay TT, Feng TC, McAdams M, Tromberg BJ (1994) Boundary conditions for the diffusion equation in radiative transfer. J Opt Soc Am A 11:2727–2741

    Article  CAS  Google Scholar 

  8. Kienle A, Patterson MS, Dögnitz N, Bays R, Wagnières G, van den Bergh H (1998) Noninvasive determination of the optical properties of two-layered turbid media. Appl Opt 37:779–791

    Article  PubMed  CAS  Google Scholar 

  9. Wilson BC, Adam G (1983) A Monte Carlo model for the absorption and flux distributions of light in tissue. Med Phys 10:824–830

    Article  PubMed  CAS  Google Scholar 

  10. van der Zee P, Delpy DT (1987) Simulation of the point spread function for light in tissue by a Monte Carlo method. Adv Exp Med Biol 215:179–191

    Article  PubMed  Google Scholar 

  11. Okada E, Firbank M, Delpy DT (1995) The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy. Phys Med Biol 40:2093–2108

    Article  PubMed  CAS  Google Scholar 

  12. Wang L, Jacques S, Zheng L (1995) MCML—Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Programs Biomed 47(2):131–146

    Article  PubMed  CAS  Google Scholar 

  13. Yamamoto K, Niwayama M, Shiga T, Lin L, Kudo N, Takahashi M (1998) Accurate NIRS measurement of muscle oxygenation by correcting the influence of a subcutaneous fat layer. Proc SPIE 3194:166–173

    Article  Google Scholar 

  14. Niwayama M, Lin L, Shao J, Kudo N, Yamamoto K (2000) Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer. Rev Sci Instrum 71(12):4571–4575

    Article  CAS  Google Scholar 

  15. Fang Q, Boas DA (2009) Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt Express 17:20178–20190

    Article  PubMed  CAS  Google Scholar 

  16. Alerstam E, Svensson T, Andersson-Engels S (2008) Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. J Biomed Opt 13:060504

    Article  PubMed  Google Scholar 

  17. Arridge SR, Schweiger M, Hiraoka M, Delpy DT (1993) A finite-element approach for modeling photon transport in tissue. Med Phys 20:299–309

    Article  PubMed  CAS  Google Scholar 

  18. Bonner R, Nossal R, Havlin S, Weiss H (1987) Model for photon migration in turbid biological media. J Opt Soc Am A 4:423–432

    Article  PubMed  CAS  Google Scholar 

  19. Nossal R, Kiefer J, Weiss GH, Bonner R, Taitelbaum H, Havlin S (1988) Photon migration in layered media. Appl Opt 27:3382–3391

    Article  PubMed  CAS  Google Scholar 

  20. Taitelbaum H, Havlin S, Weiss GH (1989) Approximate theory of photon migration in a two-layer medium. Appl Opt 28:2245–2249

    Article  PubMed  CAS  Google Scholar 

  21. Wan S, Anderson RR, Parrish JA (1981) Analytical modeling for the optical properties of skin with in vitro and in vivo applications. Photochem Photobiol 34:493–499

    PubMed  CAS  Google Scholar 

  22. Beek JF, van Staveren HJ, Posthumus P, Sterenborg HJ, van Gemert MJ (1993) The influence of respiration on optical properties of piglet lung at 632.8 nm. In: Medical optical tomography. SPIE Optical Engineering Press, Bellingham, pp 193–210

    Google Scholar 

  23. Mitic G, Közer J, Otto J, Plies E, Sökner G, Zinth W (1994) Time-gated transillumination of biological tissues and tissuelike phantoms. Appl Opt 33:6699–6710

    Article  PubMed  CAS  Google Scholar 

  24. Zaccanti G, Taddeucci A, Barilli M, Bruscaglioni P, Martelli F (1995) Optical properties of biological tissues. Proc SPIE 2389:513–521

    Article  Google Scholar 

  25. Wang ZY, Noyszewski EA, Leigh JS Jr (1990) In vivo MRS measurement of deoxymyoglobin in human forearms. Magn Reson Med 14:562–567

    Article  PubMed  CAS  Google Scholar 

  26. Harris RC, Hultman E, Kaijser L, Nordesjö LO (1975) The effect of circulatory occlusion on isometric exercise capacity and energy metabolism of the quadriceps muscle in man. Scand J Clin Lab Invest 35:87–95

    Article  PubMed  CAS  Google Scholar 

  27. Ueda Y, Ohta K, Yamashita Y, Tsuchiya Y (2003) Calculation of photon path distribution based on photon behavior analysis in a scattering medium. Opt Rev 10:444–446

    Article  Google Scholar 

  28. Niwayama M, Sone S, Murata H, Yoshida H, Shinohara S (2007) Errors in muscle oxygenation measurement using spatially-resolved NIRS and its correction. J Jpn Coll Angiol 47:17–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatsugu Niwayama Ph.D. .

Editor information

Editors and Affiliations

Appendices

Problem

  1. 2.1

    A random number used on Monte Carlo simulation should be long period and of almost uniform distribution. How can this random number be generated?

Further Reading

Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans Model Comp Sim 8(1):3–30

Panneton F, L’Ecuyer P, Matsumoto M (2006) Improved long-period generators based on linear recurrences modulo 2. ACM Trans Math Softw 32:1–16

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Niwayama, M., Yamashita, Y. (2013). Photon Migration in Tissue. In: Jue, T., Masuda, K. (eds) Application of Near Infrared Spectroscopy in Biomedicine. Handbook of Modern Biophysics, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6252-1_2

Download citation

Publish with us

Policies and ethics