Skip to main content

The Transgenerational Effects of Parental Exposure to Mutagens in Mammals

  • Chapter
  • First Online:
Stress-Induced Mutagenesis
  • 920 Accesses

Abstract

The review describes the transgenerational effects of parental exposure to ionizing radiation, chemical mutagens and anticancer drugs. The results of some recent animal studies showing elevated mutation rates in the non-exposed offspring of irradiated parents are presented and discussed. The possible mechanisms and implications of transgenerational instability are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouzeid Ali HE, Barber RC, Dubrova YE (2012) The effects of maternal irradiation during adulthood on mutation induction and transgenerational instability in mice. Mutat Res 732:21–25

    Article  PubMed  CAS  Google Scholar 

  • Aghajanyan A, Kuzmina N, Sipyagyna A, Baleva L, Suskov I (2011) Analysis of genomic instability in the offspring of fathers exposed to low doses of ionizing radiation. Environ Mol Mutagen 52:538–546

    Article  PubMed  CAS  Google Scholar 

  • Aghanjanyan A, Suskov I (2009) Transgenerational genomic instability in children of irradiated parents as a result of the Chernobyl accident. Mutat Res 671:52–57

    Article  Google Scholar 

  • Anderson D, Bishop JB, Garner RC, Ostrosky-Wegman P, Selby PB (1995) Cyclophosphamide: review of its mutagenicity for an assessment of potential germ cell risks. Mutat Res 330:115–181

    Article  PubMed  CAS  Google Scholar 

  • Barber R, Plumb MA, Smith AG, Cesar CE, Boulton E, Jeffreys AJ, Dubrova YE (2000) No correlation between germline mutation at repeat DNA and meiotic crossover in male mice exposed to X-rays or cisplatin. Mutat Res 457:79–91

    Article  PubMed  CAS  Google Scholar 

  • Barber R, Plumb MA, Boulton E, Roux I, Dubrova YE (2002) Elevated mutation rates in the germline of first- and second-generation offspring of irradiated male mice. Proc Natl Acad Sci U S A 99:6877–6882

    Article  PubMed  CAS  Google Scholar 

  • Barber RC, Miccoli L, van Buul PPW, Burr KL-A, van Duyn-Goedhart A, Angulo JF, Dubrova YE (2004) Germline mutation rates at tandem repeat loci in DNA-repair deficient mice. Mutat Res 554:287–295

    Article  PubMed  CAS  Google Scholar 

  • Barber RC, Hickenbotham P, Hatch T, Kelly D, Topchiy N, Almeida G, Jones GGD, Johnson GE, Parry JM, Rothkamm K, Dubrova YE (2006) Radiation-induced transgenerational alterations in genome stability and DNA damage. Oncogene 25:7336–7342

    Article  PubMed  CAS  Google Scholar 

  • Barber RC, Hardwick RJ, Shanks ME, Glen CD, Mughal SK, Voutounou M, Dubrova YE (2009) The effects of in utero irradiation on mutation induction and transgenerational instability in mice. Mutat Res 664:6–12

    Article  PubMed  CAS  Google Scholar 

  • Bardelli A, Cahill DP, Lederer G, Speicher MR, Kinzler KW, Vogelstein B, Lengauer C (2001) Carcinogen-specific induction of genetic instability. Proc Natl Acad Sci U S A 98:5770–5775

    Article  PubMed  CAS  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870

    Article  PubMed  CAS  Google Scholar 

  • BEIR (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII, phase 2. National Academy Press, Washington, DC

    Google Scholar 

  • Bois P, Williamson J, Brown J, Dubrova YE, Jeffreys AJ (1998) A novel unstable mouse VNTR family expanded from SINE B1 element. Genomics 49:122–128

    Article  PubMed  CAS  Google Scholar 

  • Dubrova YE (2003) Radiation-induced transgenerational instability. Oncogene 22:7087–7093

    Article  PubMed  CAS  Google Scholar 

  • Dubrova YE (2005) Radiation-induced mutation at tandem repeat DNA loci in the mouse germline: spectra and doubling doses. Radiat Res 163:200–207

    Article  PubMed  CAS  Google Scholar 

  • Dubrova YE, Jeffreys AJ, Malashenko AM (1993) Mouse minisatellite mutations induced by ionizing radiation. Nat Genet 5:92–94

    Article  PubMed  CAS  Google Scholar 

  • Dubrova YE, Nesterov VN, Krouchinsky NG, Ostapenko VA, Neumann R, Neil DL, Jeffreys AJ (1996) Human minisatellite mutation rate after the Chernobyl accident. Nature 380:683–686

    Article  PubMed  CAS  Google Scholar 

  • Dubrova YE, Plumb M, Brown J, Fennelly J, Bois P, Goodhead D, Jeffreys AJ (1998) Stage specificity, dose response, and doubling dose for mouse minisatellite germ-line mutation induced by acute radiation. Proc Natl Acad Sci U S A 95:6251–6255

    Article  PubMed  CAS  Google Scholar 

  • Dubrova YE, Plumb M, Brown J, Boulton E, Goodhead D, Jeffreys AJ (2000a) Induction of mini­satellite mutations in the mouse germline by low-dose chronic exposure to γ-radiation and fission neutrons. Mutat Res 453:17–24

    Article  PubMed  CAS  Google Scholar 

  • Dubrova YE, Plumb M, Gutierrez B, Boulton E, Jeffreys AJ (2000b) Transgenerational mutation by radiation. Nature 405:37

    Article  PubMed  CAS  Google Scholar 

  • Dubrova YE, Hickenbotham P, Glen CD, Monger K, Wong H-P, Barber RC (2008) Paternal exposure to ethylnitrosourea results in transgenerational genomic instability in mice. Environ Mol Mutagen 49:308–311

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–297

    Article  PubMed  CAS  Google Scholar 

  • Fomenko LA, Vasil’eva GV, Bezlepkin VG (2001) Micronucleus frequency is increased in bone marrow erythrocytes from offspring of male mice exposed to chronic low-dose gamma irradiation. Biol Bull 28:419–423

    Google Scholar 

  • Frankenberg-Schwager M (1990) Induction, repair and biological relevance of radiation-induced DNA lesions in eukaryotic cells. Radiat Environ Biophys 29:273–292

    Article  PubMed  CAS  Google Scholar 

  • Friedberg EC, Walker GC, Siede WR, Wood D, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis, 2nd edn. ASM, Washington, DC

    Google Scholar 

  • Glen CD, Dubrova YE (2012) Exposure to anticancer drugs can result in transgenerational genomic instability in mice. Proc Natl Acad Sci U S A 109:2984–2988

    Article  PubMed  CAS  Google Scholar 

  • Glen CD, Smith AG, Dubrova YE (2008) Single-molecule PCR analysis of germ line mutation induction by anticancer drugs in mice. Cancer Res 68:3630–3636

    Article  PubMed  CAS  Google Scholar 

  • Goerne R, Bogdahn U, Hau P (2008) Procarbazine—a traditional drug in the treatment of malignant gliomas. Curr Med Chem 15:1376–1387

    Article  PubMed  CAS  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA Jr, Kastrinakis NG, Levy B et al (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–913

    Article  PubMed  CAS  Google Scholar 

  • Gowans ID, Lorimore SA, McIlrath JM, Wright EG (2005) Genotype-dependent induction of transmissible chromosomal instability by gamma-radiation and the benzene metabolite hydroquinone. Cancer Res 65:3527–3530

    Article  PubMed  CAS  Google Scholar 

  • Hales BF, Crosman K, Robaire B (1992) Increased postimplantation loss and malformations among the F2 progeny of male rats chronically treated with cyclophosphamide. Teratology 45:671–678

    Article  PubMed  CAS  Google Scholar 

  • Hardwick RJ, Tretyakov MV, Dubrova YE (2009) Age-related accumulation of mutations supports a replication-dependent mechanism of spontaneous mutation at tandem repeat DNA loci in mice. Mol Biol Evol 26:2647–2654

    Article  PubMed  CAS  Google Scholar 

  • Hatch T, Derijck AAHA, Black PD, van der Heijden GW, De Boer P, Dubrova YE (2007) Maternal effects of the scid mutation on radiation-induced transgenerational instability in mice. Oncogene 26:4720–4724

    Article  PubMed  CAS  Google Scholar 

  • Hoyes KP, Lord BI, McCann C, Hendry JH, Morris ID (2001) Transgenerational effects of preconception paternal contamination with 55Fe. Radiat Res 156:488–494

    Article  PubMed  CAS  Google Scholar 

  • Jackson AL, Loeb LA (2001) The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res 477:7–21

    Article  PubMed  CAS  Google Scholar 

  • Lea DE (1947) Actions of radiations on living cells. Cambridge University Press, New York

    Google Scholar 

  • Lee WR, Sega GA, Bishop JB (1970) Chemically induced mutations observed as mosaics in Drosophila melanogaster. Mutat Res 9:323–336

    Article  PubMed  CAS  Google Scholar 

  • Lehnert S (2007) Biomolecular action of ionizing radiation. Taylor & Frances, New York

    Book  Google Scholar 

  • Li C-Y, Little JB, Hu K, Zhang L, Dewhirst MW, Huang Q (2001) Persistent genetic instability in cancer cells induced by non-DNA-damaging stress exposures. Cancer Res 61:428–432

    PubMed  CAS  Google Scholar 

  • Limoli CL, Kaplan MI, Phillips JW, Adair GM, Morgan WF (1997) Differential induction of chromosomal instability by DNA strand-breaking agents. Cancer Res 57:4048–4056

    PubMed  CAS  Google Scholar 

  • Little JB, Li C, Nagasawa H, Pfenning T, Vetrovs H (1996) Genomic instability and radiation mutagenesis. J Chim Phys 93:157–164

    CAS  Google Scholar 

  • Loeb LA, Loeb KR, Anderson JP (2003) Multiple mutations and cancer. Proc Natl Acad Sci U S A 100:776–781

    Article  PubMed  CAS  Google Scholar 

  • Lord BI, Woolford LB, Wang L, Stones VA, McDonald D, Lorimore SA, Papworth D, Wright EG, Scott D (1998a) Tumour induction by methyl-nitroso-urea following preconceptional paternal contamination with plutonium-239. Br J Cancer 78:301–311

    Article  PubMed  CAS  Google Scholar 

  • Lord BI, Woolford LB, Wang L, McDonald D, Lorimore SA, Stones VA, Wright EG, Scott D (1998b) Induction of lympho-haemopoietic malignancy: impact of preconception paternal irradiation. Int J Radiat Biol 74:721–728

    Article  PubMed  CAS  Google Scholar 

  • Lorimore SA, Coates PJ, Wright EG (2003) Radiation-induced genomic instability and bystander effects: inter-related nontargeted effects of exposure to ionizing radiation. Oncogene 22:7058–7069

    Article  PubMed  CAS  Google Scholar 

  • Luke GA, Riches AC, Bryant PE (1997) Genomic instability in haematopoietic cells of F1 generation mice of irradiated male parents. Mutagenesis 12:147–152

    Article  PubMed  CAS  Google Scholar 

  • Luning KG, Frolen H, Nilsson A (1976) Genetic effects of 239Pu salt injections in male mice. Mutat Res 34:539–542

    Article  PubMed  CAS  Google Scholar 

  • Mathew C (1964) The nature of delayed mutations after treatment with chloroethyl methanesuphonate and other alkylating agents. Mutat Res 1:163–172

    Article  CAS  Google Scholar 

  • Morgan WF (2003a) Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res 159:567–580

    Article  PubMed  CAS  Google Scholar 

  • Morgan WF (2003b) Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res 159:581–596

    Article  PubMed  CAS  Google Scholar 

  • Niwa O, Kominami R (2001) Untargeted mutation of the maternally derived mouse hypervariable minisatellite allele in F1 mice born to irradiated spermatozoa. Proc Natl Acad Sci U S A 98:1705–1710

    Article  PubMed  CAS  Google Scholar 

  • Nomura T (1983) X-ray-induced germ-line mutation leading to tumors. Its manifestation in mice given urethane post-natally. Mutat Res 121:59–65

    Article  PubMed  CAS  Google Scholar 

  • Pils S, Muller W-U, Streffer C (1999) Lethal and teratogenic effects in two successive generations of the HLG mouse strain after radiation exposure of zygotes—association with genomic instability? Mutat Res 429:85–92

    Article  PubMed  CAS  Google Scholar 

  • Sadamoto S, Suzuki S, Kamiya K, Kominami R, Dohi K, Niwa O (1994) Radiation induction of germline mutation at a hypervariable mouse minisatellite locus. Int J Radiat Biol 65:549–557

    Article  PubMed  CAS  Google Scholar 

  • Searle AG (1974) Mutation induction in mice. Adv Radiat Biol 4:131–207

    Google Scholar 

  • Shibuya T, Morimoto K (1993) A review of the genotoxicity of 1-ethyl-1-nitrosourea. Mutat Res 297:3–38

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi K, Shimura T, Taga M, Uematsu N, Gondo Y, Ohtaki M, Kominami R, Niwa O (2002) Persistent induction of somatic reversions of the pink-eyed unstable mutation in F-1 mice born to fathers irradiated at the spermatozoa stage. Radiat Res 157:661–667

    Article  PubMed  CAS  Google Scholar 

  • Slovinska L, Elbertova A, Misurova E (2004) Transmission of genome damage from irradiated male rats to their progeny. Mutat Res 559:29–37

    Article  PubMed  CAS  Google Scholar 

  • Tawn EJ, Whitehouse CA, Winther JF, Curwen GB, Rees GS, Stovall M, Olsen JH, Guldberg P, Rechnitzer C, Schrøder H, Boice JD Jr (2005) Chromosomal analysis in childhood cancer survivors and their offspring—no evidence for radiotherapy-induced persistent genomic instability. Mutat Res 583:198–206

    Article  PubMed  CAS  Google Scholar 

  • Timofeeff-Ressovsky NW, Zimmer KG (1947) Das Trefferprinzip in der Biologie. S. Herzel, Leipzig

    Google Scholar 

  • Tomasz M (1995) Mitomycin C, small fast and deadly (but very selective). Chem Biol 2:575–579

    Article  PubMed  CAS  Google Scholar 

  • UNSCEAR (2001) Hereditary effects of radiation. United Nations, New York

    Google Scholar 

  • UNSCEAR (2008) Effects of ionizing radiation. Annex C. Non-targeted and delayed effects of exposure to ionizing radiation. United Nations, New York

    Google Scholar 

  • Vilarino-Guell C, Smith AG, Dubrova YE (2003) Germline mutation induction at mouse repeat DNA loci by chemical mutagens. Mutat Res 526:63–73

    Article  PubMed  CAS  Google Scholar 

  • Vorobtsova IE (2000) Irradiation of male rats increases the chromosomal sensitivity of progeny to genotoxic agents. Mutagenesis 15:33–38

    Article  PubMed  CAS  Google Scholar 

  • Vorobtsova IE, Aliyakparova LM, Anisimov VN (1993) Promotion of skin tumors by 12-O-tetradecanoylphorbol-13-acetate in two generations of descendants of male mice exposed to X-ray irradiation. Mutat Res 287:207–216

    Article  PubMed  CAS  Google Scholar 

  • Wiley LM, Baulch JE, Raabe OG, Straume T (1997) Impaired cell proliferation in mice that persists across at least two generations after paternal irradiation. Radiat Res 148:145–151

    Article  PubMed  CAS  Google Scholar 

  • Wright EG (2010) Manifestations and mechanisms of non-targeted effects of ionizing radiation. Mutat Res 687:28–33

    Article  PubMed  CAS  Google Scholar 

  • Yauk CL, Dubrova YE, Grant GR, Jeffreys AJ (2002) A novel single molecule analysis of spontaneous and radiation-induced mutation at a mouse tandem repeat locus. Mutat Res 500:147–156

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment 

This work was supported by grants from the European Commission (NOTE, Contract Number 036465), Cancer Research UK (Contract Number C23612/A9483 and C23912/A12262), the Wellcome Trust (Contract Number 091106/Z/10/Z), and the EMF Biological Research Trust (Contract Number BRT 11/42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri E. Dubrova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dubrova, Y.E. (2013). The Transgenerational Effects of Parental Exposure to Mutagens in Mammals. In: Mittelman, D. (eds) Stress-Induced Mutagenesis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6280-4_12

Download citation

Publish with us

Policies and ethics