Skip to main content

Frequency References Based on the Thermal Properties of Silicon

  • Chapter
  • First Online:
Electrothermal Frequency References in Standard CMOS

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 906 Accesses

Abstract

This chapter introduces the concept of on-chip frequency generation based on the thermal properties of silicon. Thermal-diffusivity of silicon, D, will be introduced as the rate at which heat diffuses through a silicon substrate. It will be described how an electrothermal filter (ETF) harnesses this physical property in order to produce accurate on-chip delays. The design of a practical ETF within standard CMOS processes will be described. It will be shown that an ETF behaves like a low-pass filter with a defined phase shift, which is a combined function of its geometry and D. Furthermore, a method of frequency generation based on an electrothermal frequency-locked loop (FLL) will be introduced. Such loop locks the output frequency of a variable oscillator to the phase shift of an ETF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamann HF et al (2007) Hotspot-limited microprocessors: direct temperature and power distribution measurements. IEEE J Solid-State Circ 42(1):56–65

    Article  Google Scholar 

  2. Trimmer W (1997) Micromechanics and MEMs: classic and seminal papers to 1990. IEEE publications, New York, pp 353–433. ISBN 9780470545263

    Book  Google Scholar 

  3. Gray PR, Hamilton DJ (1971) Analysis of electrothermal integrated circuits. IEEE J Solid-State Circ 6(1):8–14

    Article  Google Scholar 

  4. Matzen WT et al (1964) Thermal techniques as applied to functional electronic blocks. Proc IEEE 2:1496–1501

    Article  Google Scholar 

  5. Friedman MF (1969) Monolithic high-Q bandpass filters employing electrothermal circuits. Ph.D. dissertation, Department of Electrical and Computer Engineering, University of Arizona, Tucson

    Google Scholar 

  6. Szekely V (1994) Thermal monitoring of microelectronic structures. Microelectron J 25(3):157–170

    Article  MathSciNet  Google Scholar 

  7. Szekely V et al (1995) A new monolithic temperature sensor: the thermal feedback oscillator. In: Proceedings of the transducers, Stockholm, Sweden, June 1995, pp 124–127

    Google Scholar 

  8. Bosch G (1972) A thermal oscillator using the thermo-electric (seebeck) effect in silicon. Solid State Electron 15(8):849–852

    Article  MathSciNet  Google Scholar 

  9. Turkes P (1983) An ion-implanted resistor as thermal transient sensor for the determination of the thermal diffusivity in silicon. Physica Status Solidi A 75(2):519–523

    Article  Google Scholar 

  10. Touloukian YS et al (1998) Thermophysical properties of matter, vol 10. Plenum, New York

    Google Scholar 

  11. Vermeersch B (2009) Thermal AC modelling, simulation and experimental analysis of microelectronic structures including nanoscale and high-speed effects. Ph.D. dissertation, University of Gent

    Google Scholar 

  12. Veijola T (1996)“Simple model for thermal spreading impedance. In: Proceedings of the BEC’96, Tallinn, Estonia, October 1996, pp 73–76

    Google Scholar 

  13. Makinwa KAA, Snoeij MF (2006) A CMOS temperature-to-frequency converter with an inaccuracy of less than ±0.5 °C (3σ) from −40 °C to 105 °C. IEEE J Solid-State Circ 41(12):2992–2997

    Article  Google Scholar 

  14. van Herwaarden AW, Sarro PM (1986) Thermal sensors based on the seebeck effect. Sens Actuat 10:321–346

    Article  Google Scholar 

  15. Xia S, Makinwa KAA (2007) Design of an optimized electrothermal filter for a temperature-to-frequency converter. In: Proceedings of the IEEE sensors, Atlanta, GA, October 2007, pp 1255–1258

    Google Scholar 

  16. Kashmiri SM et al (2009) A temperature-to-digital converter based on an optimized electrothermal filter. IEEE J Solid-State Circ 44(7):2026–2035

    Article  Google Scholar 

  17. Makinwa KAA (2004) Flow sensing with thermal sigma-delta modulators. Ph.D. dissertation, Delft University of Technology, Delft

    Google Scholar 

  18. Hirai T, Asai T, Amemiya Y (2010) A CMOS phase-shift oscillator based on the conduction of heat. J Circuit Syst Comput 19(4):763–772

    Article  Google Scholar 

  19. Makinwa KAA, Witte JF (2005) A temperature sensor based on a thermal oscillator. In: Proceedings of the IEEE sensors, Irvine, CA, pp 1149–1152

    Google Scholar 

  20. Bakker A, Huijsing JH (1996) Micropower CMOS temperature sensor with digital output. IEEE J Solid-State Circ 31(7):933–937

    Article  Google Scholar 

  21. Zhang C, Makinwa KAA (2008) Interface electronics for a CMOS electrothermal frequency-locked-loop. IEEE J Solid-State Circ 43(7):1603–1608

    Article  Google Scholar 

  22. Pertijs MAP et al (2005) A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1 °C from −55 °C to 125 °C. IEEE J Solid-State Circ 40(12):2805–2815

    Article  Google Scholar 

  23. Razavi B (2001) Design of analog CMOS integrated circuits. McGraw-Hill, New York

    Google Scholar 

  24. Johns DA, Martin K (1997) Analog integrated circuit design. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kashmiri, S.M., Makinwa, K.A.A. (2013). Frequency References Based on the Thermal Properties of Silicon. In: Electrothermal Frequency References in Standard CMOS. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6473-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6473-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6472-3

  • Online ISBN: 978-1-4614-6473-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics