Skip to main content

Quantitative Sensory Testing

  • Chapter
  • First Online:
Neuromuscular Disorders in Clinical Practice

Abstract

Sensory system examination is a very important part of clinical neurology. Quantitative sensory studies using automated systems to evaluate the sensory function are useful in clinical and experimental studies of peripheral neuropathies. This chapter discusses the sensory receptors, sensory examination, and a quantitative system designed to deliver sensory stimuli, including touch-pressure, vibration, thermal, and heat-pain sensory stimuli, in a quantifiable and reproducible manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawson SN. The peripheral sensory nervous system: dorsal root ganglion neurons. In: Dyck PJ, Thomas PK, editors. Peripheral neuropathy. 4th ed. Philadelphia: Elsevier Saunders; 2005. p. 163–202.

    Chapter  Google Scholar 

  2. Kandel ER, Schwartz JH, Jessell TM, editors. The bodily senses. In: Principles of neural sciences. 4th ed. New York: McGraw Hill; 2000, p. 430–50.

    Google Scholar 

  3. Pestronk A, Florence J, Levine T, Al-Lozi MT, Lopate G, Miller T, et al. Sensory exam with quantitative tuning fork: rapid, sensitive and predictive of SNAP amplitude. Neurology. 2004;62:461–4.

    Article  PubMed  CAS  Google Scholar 

  4. Dyck PJ, O’Brien P, Johnson D, Klein C, Dyck PJB. Quantitative sensory testing. In: Dyck PJ, Thomas PK, editors. Peripheral neuropathy. 4th ed. Philadelphia: Elsevier-Saunders; 2005. p. 1063–94.

    Google Scholar 

  5. Lowenstein DH, Martin JB, Hauser SL. Approach to the patient with neurologic disease. In: Fauci AS, Braunwald E, Kasper DL, Hauser SL, Longo DL, Jameson JL, et al., editors. Harrison’s principles of internal medicine. 17th ed. New York: McGraw-Hill; 2008. p. 2484–9.

    Google Scholar 

  6. Martina I, van Koningsveld R, Schmitz P, van der Meche F, van Doorn P. For the European Inflammatory Neuropathy Cause and Treatment (INCAT) Group. Measuring vibration threshold with a graduated tuning fork in normal aging and in patients with polyneuropathy. J Neurol Neurosurg Psychiatry. 1998;65:743–7.

    Article  PubMed  CAS  Google Scholar 

  7. Weinstein S. Fifty years of somatosensory research: from the Semmes-Weinstein monofilaments to the Weinstein Enhanced Sensory Test. J Hand Ther. 1993;6:11–22.

    Article  PubMed  CAS  Google Scholar 

  8. Mayfield J, Sugarman J. The use of the Semmes-Weinstein monofilament and other threshold tests for preventing foot ulceration and amputation in persons with diabetes. J Fam Pract. 2000;49(suppl):S17–29.

    PubMed  CAS  Google Scholar 

  9. Olaleye D, Perkins B, Bril V. Evaluation of three screening tests and a risk assessment model for diagnosing peripheral neuropathy in the diabetes clinic. Diabetes Res Clin Pract. 2001;54:115–28.

    Article  PubMed  CAS  Google Scholar 

  10. Burns T, Taly A, O’Brien P, Dyck PJ. Clinical versus quantitative assessment improving clinical performance. J Peripher Nerv Syst. 2002;7:112–7.

    Article  PubMed  Google Scholar 

  11. Perkins B, Olaleye D, Zinman B, Bril V. Simple screening tests for peripheral neuropathy in the diabetic clinic. Diabetes Care. 2001;24:250–6.

    Article  PubMed  CAS  Google Scholar 

  12. Mythili A, Kumar K, Subrahmanyam K, Venkateswarlu K, Butchi R. A comparative study of examination scores and quantitative sensory testing in diagnosis of diabetic polyneuropathy. Int J Diabetes Dev Ctries. 2010;30:43–8.

    Article  PubMed  CAS  Google Scholar 

  13. Dyck PJ, Zimmermann I, O’Brien PC, Ness A, Caskey P, Karnes J, et al. Introduction of automated systems to evaluate touch-pressure, vibration, and thermal cutaneous sensation in man. Ann Neurol. 1978;4:502–10.

    Article  PubMed  CAS  Google Scholar 

  14. Tick Chong PS, Cros DP. Technology literature review: quantitative sensory testing. Muscle Nerve. 2004;29:734–47.

    Article  Google Scholar 

  15. Freeman R, Stewart JD. Quantitative sensory testing. In: Katirji B, Preston E, Kaminski H, Shapiro B, Ruff R, editors. Neuromuscular disorders in clinical practice. Philadelphia: Elsevier; 2001. p. 183–92.

    Google Scholar 

  16. Verdugo R, Ochoa J. Quantitative sensory testing: a key method for functional evaluation of small calibre afferent channels. Brain. 1992;115:893–913.

    Article  PubMed  Google Scholar 

  17. Reulen JPH, Lansbergen MDI, Verstraete E, Spaans F. Comparison of thermal threshold tests to assess small nerve fiber function: limits vs. levels. Clin Neurophysiol. 2003;114:556–63.

    Article  PubMed  CAS  Google Scholar 

  18. Yarnitsky D, Sprecher E. Thermal testing: normative data and repeatability for various test algorithms. J Neurol Sci. 1994;125:39–45.

    Article  PubMed  CAS  Google Scholar 

  19. Dyck PJ, Karnes JL, Gillen DA, O’Brien PC, Zimmermann IR, Johnson DM. Comparison of algorithms of testing for use in automated evaluation of sensation. Neurology. 1990;40:1607–13.

    Article  PubMed  CAS  Google Scholar 

  20. Dyck PJ, Zimmermann I, Gillen DA, Johnson D, Karnes JL, O’Brien PC. Cool, warm and heat-pain detection thresholds: testing methods and inferences about anatomic distribution of receptors. Neurology. 1993;43:1500–8.

    Article  PubMed  CAS  Google Scholar 

  21. Gruener G, Dyck PJ. Quantitative sensory testing: methodology, applications and future directions. J Clin Neurophysiol. 1994;11:568–83.

    Article  PubMed  CAS  Google Scholar 

  22. Dyck PJ, O’Brien PC, Kosanke JL, Gillen DA, Karnes JL. A 4,2, and 1 stepping algorithm for quick and accurate estimation of cutaneous sensation threshold. Neurology. 1993;43:1508–12.

    Article  PubMed  CAS  Google Scholar 

  23. Kandel ER, Schwartz JH, Jessell TM, editors. Coding of sensory information. In: Principles of neural sciences. 4th ed. New York: McGraw Hill; 2000, p. 411–29.

    Google Scholar 

  24. Carterette EC. A computer program for estimating thresholds by means of Wetherill’s Up-Down Transformed Response Rule (UDTR). J Aud Res. 1984;24:191–204.

    PubMed  CAS  Google Scholar 

  25. Dyck PJ, Zimmermann IR, Johnson DM, Gillen D, Hokanson J, Karnes JL, et al. A standard test of heat-pain responses by CASE IV. J Neurol Sci. 1996;136:54–63.

    Article  PubMed  CAS  Google Scholar 

  26. Dyck PJ, O’Brien PC, Litchy WJ, Harper CM, Daube JR, Dyck PJB. Use of percentiles and normal deviates to express nerve conduction and other test abnormalities. Muscle Nerve. 2001;24:307–10.

    Article  PubMed  CAS  Google Scholar 

  27. Rolke R, Baron R, Maier C, Tolle TR, Treede R, Beyer A, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain. 2006;123:231–43.

    Article  PubMed  CAS  Google Scholar 

  28. Blankenburg M, Boekens H, Hechler T, Maier C, Krumova E, Scherens A, et al. Reference values for quantitative sensory testing in children and adolescents: developmental and gender differences of somatosensory perception. Pain. 2010;149:76–88.

    Article  PubMed  CAS  Google Scholar 

  29. Wang AK, Gillen DA, Dyck PJ. Effect of simple analgesics on ­quantitative sensation test threshold. Neurology. 1999;53:1865–7.

    Article  PubMed  CAS  Google Scholar 

  30. Bowsher D, Leijon G, Thuomas KA. Central poststroke pain: ­correlation of MRI with clinical pain characteristics and sensory abnormalities. Neurology. 1998;51:1352–8.

    Article  PubMed  CAS  Google Scholar 

  31. Freeman R, Chase KP, Risk M. Quantitative sensory testing cannot differentiate simulated sensory loss from sensory neuropathy. Neurology. 2003;60:465–70.

    Article  PubMed  Google Scholar 

  32. Zaslansky R, Yarnitsky D. Clinical applications of quantitative sensory testing (QST). J Neurol Sci. 1998;153:215–38.

    Article  PubMed  CAS  Google Scholar 

  33. Dyck PJ, O’Brien PC. Quantitative sensory testing in epidemiological and therapeutic studies of peripheral neuropathy. Muscle Nerve. 1999;22:659–62.

    Article  PubMed  CAS  Google Scholar 

  34. Dyck PJ, Karnes JL, O’Brien PC, Litchy WJ, Low PA, Melton 3rd LJ. The Rochester Diabetic Neuropathy Study: reassessment of tests and criteria for diagnosis and staged severity. Neurology. 1992;42:1164–70.

    Article  PubMed  CAS  Google Scholar 

  35. Dyck PJ, Davies JL, Litchy WJ, O’Brien PC. Longitudinal assessment of diabetic polyneuropathy using a composite score in the Rochester Diabetic Neuropathy Study cohort. Neurology. 1997;49:229–39.

    Article  PubMed  CAS  Google Scholar 

  36. Dyck PJ, O’Brien PC, Litchy WJ, Harper CM, Klein CJ, Dyck PJB. Monotonicity of nerve tests in diabetes: subclinical nerve dysfunction precedes diagnosis of polyneuropathy. Diabetes Care. 2005;28(9):2192–200.

    Article  PubMed  Google Scholar 

  37. Dyck PJ, Dyck PJB, Velosa JA, Larson TS, O’Brien PC. The nerve growth factor study group. Pattern of quantitative sensation testing of hypoesthesia and hyperalgesia are predictive of diabetic polyneuropathy. Diabetes Care. 2000;23:510–7.

    Article  PubMed  CAS  Google Scholar 

  38. Olney R. Clinical trials for polyneuropathy: the role of nerve conduction studies, quantitative sensory testing, and autonomic function testing. J Clin Neurophysiol. 1998;15:129–37.

    Article  PubMed  CAS  Google Scholar 

  39. Apfel SC, Schwartz S, Adornato BT, Freeman R, Biton V, Rendell M, et al. Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy. JAMA. 2000;284:2215–21.

    Article  PubMed  CAS  Google Scholar 

  40. Ametov AS, Barinov A, Dyck PJ, Hermann R, Kozlova N, Litchy WJ, et al. The sensory symptoms of diabetic polyneuropathy are improved with α-lipoic acid: the Sydney trial. Diabetes Care. 2003;26:770–6.

    Article  PubMed  CAS  Google Scholar 

  41. Ziegler D, Low PA, Litchy WJ, Boulton AJ, Vinik AI, Freeman R, et al. Efficacy and safety of antioxidant treatment with α-lipoic acid over 4 years in diabetic polyneuropathy: the Nathan 1 trial. Diabetes Care. 2011;34:2054–60.

    Article  PubMed  CAS  Google Scholar 

  42. Brown MJ, Bird SJ, Watling S, Kaleta H, Hayes L, Eckert S, et al. Natural progression of diabetic neuropathy in the Zenarestat study population. Diabetes Care. 2004;27:1153–9.

    Article  PubMed  Google Scholar 

  43. Shy M, Frohman EM, So YT, Aresso JC, Cornblath DR, Giuliani MJ, et al. Quantitative sensory testing: report of the therapeutic and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2003;60:898–904.

    Article  PubMed  CAS  Google Scholar 

  44. Bird SJ, Brown MJ, Spino C, Watling S, Foyt HL. Value of repeated measures of nerve conduction and quantitative sensory testing in a diabetic neuropathy trial. Muscle Nerve. 2006;34:214–24.

    Article  PubMed  Google Scholar 

  45. Lacomis D. Small fiber neuropathy. Muscle Nerve. 2002;26:173–88.

    Article  PubMed  Google Scholar 

  46. Hoitsma E, Reulen JPH, de Baets M, Drent M, Spaans F, Faber CG. Small fiber neuropathy: a common and important clinical disorder. J Neurol Sci. 2004;227:119–30.

    Article  PubMed  CAS  Google Scholar 

  47. Jamal GA, Hansen S, Weir A, Ballantyne JP. The neurophysiologic investigation of small fiber neuropathies. Muscle Nerve. 1987;10:537–45.

    Article  PubMed  CAS  Google Scholar 

  48. Joint Task Force of the EFNS and the PNS. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. J Peripher Nerv Syst. 2010;15:79–92.

    Article  Google Scholar 

  49. Low V, Sandroni P, Fealey R, Low PA. Detection of small fiber neuropathy by sudomotor testing. Muscle Nerve. 2006;34:57–61.

    Article  PubMed  Google Scholar 

  50. Periquet MI, Novak V, Collins MP, Nagaraja HN, Erdem S, Nash SM, et al. Painful sensory neuropathy: prospective evaluation using skin biopsy. Neurology. 1999;53:1641–7.

    Article  PubMed  CAS  Google Scholar 

  51. Magda P, Latov N, Renard M, Sander HW. Quantitative sensory testing: high sensitivity in small fiber neuropathy with normal NCS/EMG. J Peripher Nerv Syst. 2002;7:225–8.

    Article  PubMed  Google Scholar 

  52. Sorensen L, Molyneaux L, Yue DK. The level of small nerve fiber dysfunction does not predict pain in diabetic neuropathy. Clin J Pain. 2006;22:261–5.

    Article  PubMed  Google Scholar 

  53. Malik RA, Veves A, Walker D, Siddique I, Lye RH, Schady W, et al. Sural nerve pathology in diabetic patients with mild neuropathy: relationship to pain, quantitative sensory testing and peripheral nerve electrophysiology. Acta Neuropathol. 2001;101:367–74.

    PubMed  CAS  Google Scholar 

  54. Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010;9:807–19.

    Article  PubMed  Google Scholar 

  55. Lipton RB, Galer BS, Dutcher JP, Portenoy RK, Berger A, Arezzo JC, et al. Quantitative sensory testing demonstrates that subclinical sensory neuropathy is prevalent in patients with cancer. Arch Neurol. 1987;44:944–6.

    Article  PubMed  CAS  Google Scholar 

  56. Lipton RB, Galer BS, Dutcher JP, Portenoy RK, Pahmer V, Meller F, et al. Large and small fiber type sensory dysfunction in patients with cancer. J Neurol Neurosurg Psychiatry. 1991;54:706–9.

    Article  PubMed  CAS  Google Scholar 

  57. Forsyth PA, Balmaceda C, Peterson K, Seidman AD, Brasher P, DeAngelis LM. Prospective study of paclitaxel-induced peripheral neuropathy with quantitative sensory testing. J Neurooncol. 1997;35:47–53.

    Article  PubMed  CAS  Google Scholar 

  58. Hershman DL, Weimer LH, Wang A, Kranwinkel G, Brafman L, Fuentes L, et al. Association between patient reported outcomes and quantitative sensory tests for measuring long-term neurotoxicity in breast cancer survivors treated with adjuvant paclitaxel chemotherapy. Breast Cancer Res Treat. 2011;125:767–74.

    Article  PubMed  CAS  Google Scholar 

  59. Boyette-Davis JA, Eng C, Wang XS, Cleeland CS, Wendelshafer-Crabb G, Kennedy WR, et al. Subclinical peripheral neuropathy is a common finding in colorectal cancer patients prior to chemotherapy. Clin Cancer Res. 2012;18(12):3180–7.

    Article  PubMed  CAS  Google Scholar 

  60. Chaudhry V, Eisenberger MA, Sinibaldi VJ, Sheikh K, Griffin JW, Cornblath DR. A prospective study of suramin-induced peripheral neuropathy. Brain. 1996;119:2039–52.

    Article  PubMed  Google Scholar 

  61. Herrmann DN, McDermott MP, Henderson D, Chen L, Akowuah K, Schifitto G, et al. Epidermal nerve fiber density, axonal swellings and QST as predictors of HIV distal sensory neuropathy. Muscle Nerve. 2004;29:420–7.

    Article  PubMed  Google Scholar 

  62. Herrmann DN, McDermott MP, Sowden JE, Henderson D, Messing S, Cruttenden K, et al. Is skin biopsy a predictor of transition to symptomatic HIV neuropathy? Neurology. 2006;28:857–61.

    Article  Google Scholar 

  63. Evans SR, Clifford DB, Kitch DW, Goodkin K, Schiffito G, McArthur JC, et al. Simplification of the research diagnosis of HIV-associated sensory neuropathy. HIV Clin Trials. 2008;9:434–9.

    Article  PubMed  Google Scholar 

  64. Berger AR, Arezzo JC, Schaumberg HH, Skowron G, Merigan T, Bozzette S, et al. 2′,3′ -dideoxycytidine (ddC) toxic neuropathy: a study of 52 patients. Neurology. 1993;43:358–62.

    Article  PubMed  CAS  Google Scholar 

  65. Luciano CA, Russell JW, Banerjee TK, Quirk JM, Scott LJ, Dambrosia JM, et al. Physiological characterization of neuropathy in Fabry’s disease. Muscle Nerve. 2002;26:622–9.

    Article  PubMed  Google Scholar 

  66. Schiffmann R, Floeter MK, Dambrosia JM, Gupta S, Moore DF, Sharabi Y, et al. Enzyme replacement therapy improves peripheral nerve and sweat function in Fabry disease. Muscle Nerve. 2003;28:703–10.

    Article  PubMed  CAS  Google Scholar 

  67. Yosipovitch G, Yarnitsky D, Mermelstein V, Sprecher E, Reiss J, Witenberg C, et al. Paradoxical heat sensation in uremic polyneuropathy. Muscle Nerve. 1995;18:768–71.

    Article  PubMed  CAS  Google Scholar 

  68. Lund C, Koskinen M, Suneetha S, Lockwood DN, Haanpaa M, Haapasalo H, et al. Histopathological and clinical findings in ­leprosy patients with chronic neuropathic pain: a study from Hyderabad, India. Lepr Rev. 2007;78:369–80.

    PubMed  Google Scholar 

  69. Hilz MJ, Axelrod FB. Quantitative sensory testing of thermal and vibratory perception in familial dysautonomia. Clin Auton Res. 2000;10:177–83.

    Article  PubMed  CAS  Google Scholar 

  70. Østarvik K, Norheim I, JØrum E. Pain and small-fiber neuropathy in patients with hypothyroidism. Neurology. 2006;67:786–91.

    Article  Google Scholar 

  71. Imai T, Matsumoto H, Minami R. Asymptomatic ulnar neuropathy in carpal tunnel syndrome. Arch Phys Med Rehabil. 1990;71:992–4.

    PubMed  CAS  Google Scholar 

  72. Goadsby PJ, Burke D. Deficits in the function of small and large afferent fibers in confirmed cases of carpal tunnel syndrome. Muscle Nerve. 1994;17:614–22.

    Article  PubMed  CAS  Google Scholar 

  73. Borg K, Lindblom U. Diagnostic value of quantitative sensory testing (QST) in carpal tunnel syndrome. Acta Neurol Scand. 1988;78:537–41.

    Article  PubMed  CAS  Google Scholar 

  74. Merchut MP, Kelly MA, Toleikis SC. Quantitative sensory thresholds in carpal tunnel syndrome. Electromyogr Clin Neurophysiol. 1990;30:119–24.

    PubMed  CAS  Google Scholar 

  75. Werner RA, Franzblau A, Johnston E. Quantitative vibrometry and electrophysiological assessment in screening for carpal tunnel syndrome among industrial workers: a comparison. Arch Phys Med Rehabil. 1994;75:1228–32.

    Article  PubMed  CAS  Google Scholar 

  76. Werner RA, Franzblau A, Johnston E. Comparison of multiple ­frequency vibrometry testing and sensory nerve conduction measures in screening for carpal tunnel syndrome in an industrial testing. Am J Phys Med Rehabil. 1995;74:101–6.

    PubMed  CAS  Google Scholar 

  77. Zackowski KM, Smith SA, Reich DS, Gordon-Lipkin E, Chodkowski BA, Sambadan DR, et al. Sensorimotor dysfunction in multiple sclerosis and column-specific magnetization transfer-imaging abnormalities in the spinal cord. Brain. 2009;132:1200–9.

    Article  PubMed  Google Scholar 

  78. Hatem SM, Attal N, Ducreux D, Gautron M, Parker F, Plaghki L, et al. Clinical functional and structural determinants of central pain in syringomyelia. Brain. 2010;133:3409–22.

    Article  PubMed  Google Scholar 

  79. MacGowan DJ, Janal MN, Clark WC, Wharton RN, Lazar RM, Sacco RL, et al. Central poststroke pain and Wallenberg’s lateral medullary infarction: frequency, character, and determinants in 63 patients. Neurology. 1997;49:120–5.

    Article  PubMed  CAS  Google Scholar 

  80. Gruenwald I, Vardi Y, Gartman I, Juven E, Sprecher E, Yarnitsky D, et al. Sexual dysfunction in females with multiple sclerosis: quantitative sensory testing. Mult Scler. 2007;13:95–105.

    Article  PubMed  Google Scholar 

  81. Julkunen L, Tenovuo O, Jääskeläinen SK, Hämäläinen H. Recovery of somatosensory deficits in acute stroke. Acta Neurol Scand. 2005;11:366–72.

    Article  Google Scholar 

Download references

Acknowledgment

The author wants to thank Ken Maurer, manager of the neurophysiology laboratory at the Nebraska Medical Center, and Debi Kibbee, research assistant at the Department of Neurological Sciences, University of Nebraska Medical Center, for their contribution to all the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pariwat Thaisetthawatkul MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thaisetthawatkul, P. (2014). Quantitative Sensory Testing. In: Katirji, B., Kaminski, H., Ruff, R. (eds) Neuromuscular Disorders in Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6567-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6567-6_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6566-9

  • Online ISBN: 978-1-4614-6567-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics