Skip to main content

Inherited Metabolic Neuropathies

  • Chapter
  • First Online:
Neuromuscular Disorders in Clinical Practice

Abstract

The inherited metabolic neuropathies are a heterogeneous group of neuropathies, which are now reclassified based on enzyme deficiency or genotyping. This chapter covers the major metabolic inherited neuropathies where peripheral nerve dysfunction is a feature of a multisystem disease or a manifestation of an underlying genetic mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrade C. A peculiar form of peripheral neuropathy: familial atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain. 1952;75:408–27.

    Article  PubMed  CAS  Google Scholar 

  2. Sousa A, Coelho T, Barros J, Sequeiros J. Genetic epidemiology of familial amyloidotic polyneuropathy (FAP)-type I in Povoa do Varzim and Vila do Conde (north of Portugal). Am J Med Genet. 1995;60:512–21.

    Article  PubMed  CAS  Google Scholar 

  3. Sousa A, Andersson R, Drugge U, Holmgren G, Sandgren O. Familial amyloidotic polyneuropathy in Sweden: geographical distribution, age of onset, and prevalence. Hum Hered. 1993;43:288–94.

    Article  PubMed  CAS  Google Scholar 

  4. Costa PP, Figueira AS, Bravo FR. Amyloid fibril protein related to prealbumin in familial amyloidotic polyneuropathy. Proc Natl Acad Sci USA. 1978;75:4499–503.

    Article  PubMed  CAS  Google Scholar 

  5. Dwulet FE, Benson MD. Polymorphism of human plasma thyroxine binding prealbumin. Biochem Biophys Res Commun. 1983;114:657–62.

    Article  PubMed  CAS  Google Scholar 

  6. Dyck PJ, Lambert EH. Dissociated sensation in amyloidosis. Compound action potential, quantitative histologic and teased-fiber, and electron microscopic studies of sural nerve biopsies. Arch Neurol. 1969;20:490–507.

    Article  PubMed  CAS  Google Scholar 

  7. Said G, Ropert A, Faux N. Length-dependent degeneration of fibers in Portuguese amyloid polyneuropathy: a clinicopathologic study. Neurology. 1984;34:1025–32.

    Article  PubMed  CAS  Google Scholar 

  8. Beckman A, Bjerle P, Olofsson B. Electrocardiographic findings in familial amyloidotic polyneuropathy. Am J Noninvas Card. 1992;6:192–6.

    Google Scholar 

  9. Hongo M, Ikeda S. Echocardiographic assessment of the evolution of amyloid heart disease: a study with familial amyloid polyneuropathy. Circulation. 1986;73:249–56.

    Article  PubMed  CAS  Google Scholar 

  10. Goren H, Steinberg MC, Farboody GH. Familial oculoleptomeningeal amyloidosis. Brain. 1980;103:473–95.

    Article  PubMed  CAS  Google Scholar 

  11. Araki S, Yi S. Pathology of familial amyloidotic polyneuropathy with TTR met 30 in Kumamoto, Japan. Neuropathology. 2000;20(Suppl):S47–51.

    Article  PubMed  Google Scholar 

  12. Thomas PK, King RHM. Peripheral nerve changes in amyloid neuropathy. Brain. 1974;97:395–406.

    Article  PubMed  CAS  Google Scholar 

  13. Vital C, Vital A, Bouillot-Eimer S, Brechenmacher C, Ferrer X, Lagueny A. Amyloid neuropathy: a retrospective study of 35 peripheral nerve biopsies. J Peripher Nerv Syst. 2004;9:232–41.

    Article  PubMed  Google Scholar 

  14. Hou X, Aguilar M, Small DH. Transthyretin and familial amyloidotic polyneuropathy: Recent progress in understanding the molecular mechanism of neurodegeneration. FEBS J. 2007;274:1637–50.

    Article  PubMed  CAS  Google Scholar 

  15. Yazaki M, Tokuda T, Nakamura A, et al. Cardiac amyloid in patients with familial amyloid polyneuropathy consists of abundant wild-type transthyretin. Biochem Biophys Res Commun. 2000;274:702–6.

    Article  PubMed  CAS  Google Scholar 

  16. Almeida MR, Alves IL, Terazaki H, Ando Y, Saraiva MJ. Comparative studies of two transthyretin variants with protective effects on familial amyloidotic polyneuropathy: TTR R104H and TTR T119M. Biochem Biophys Res Commun. 2000;270:1024–8.

    Article  PubMed  CAS  Google Scholar 

  17. Takaoka Y, Tashiro F, Yi S, et al. Comparison of amyloid deposition in two lines of transgenic mouse that model familial amyloidotic polyneuropathy, type I. Transgenic Res. 1997;6:261–9.

    Article  PubMed  CAS  Google Scholar 

  18. Bril V, England JD, Franklin GM, et al. Evidence-based guideline: treatment of painful diabetic neuropathy–report of the American Association of Neuromuscular and Electrodiagnostic Medicine, the American Academy of Neurology, and the American Academy of Physical Medicine & Rehabilitation. Muscle Nerve. 2011;43:910–7.

    Article  PubMed  Google Scholar 

  19. Holmgren G, Ericzon B, Groth C, et al. Clinical improvement and amyloid regression after liver transplantation in hereditary transthyretin amyloidosis. Lancet. 1993;341:1113–6.

    Article  PubMed  CAS  Google Scholar 

  20. Ohya Y, Okamoto S, Tasaki M, et al. Manifestations of transthyretin-related familial amyloidotic polyneuropathy: long-term follow-up of Japanese patients after liver transplantation. Surg Today. 2011;41:1211–8.

    Article  PubMed  Google Scholar 

  21. Stangou AJ, Heaton ND, Hawkins PN. Transmission of systemic transthyretin amyloidosis by means of domino liver transplantation. N Engl J Med. 2005;352:2356.

    Article  PubMed  CAS  Google Scholar 

  22. Herlenius G, Wilczek HE, Larsson M, Ericzon B. Ten years of international experience with liver transplantation for familial amyloidotic polyneuropathy: results from the Familial Amyloidotic Polyneuropathy World Transplant Registry. Transplantation. 2004;77:64–71.

    Article  PubMed  Google Scholar 

  23. Yamamoto S, Wilczek HE, Nowak G, et al. Liver transplantation for familial amyloidotic polyneuropathy (FAP): a single-center experience over 16 years. Am J Transplant. 2007;7:2597–604.

    Article  PubMed  CAS  Google Scholar 

  24. Yamashita T, Ando Y, Okamoto S, et al. Long-term survival after liver transplantation in patients with familial amyloid polyneuropathy. Neurology. 2012;78:637–43.

    Article  PubMed  CAS  Google Scholar 

  25. Pomfret EA, Lewis WD, Jenkins RL, et al. Effect of orthotopic liver transplantation on the progression of familial amyloidotic polyneuropathy. Transplantation. 1998;65:918–25.

    Article  PubMed  CAS  Google Scholar 

  26. Liepnieks JJ, Zhang LQ, Benson MD. Progression of transthyretin amyloid neuropathy after liver transplantation. Neurology. 2010;75:324–7.

    Article  PubMed  CAS  Google Scholar 

  27. Ando Y, Terazaki H, Nakamura M, et al. A different amyloid formation mechanism: de novo oculoleptomeningeal amyloid deposits after liver transplantation. Transplantation. 2004;77:345–9.

    Article  PubMed  CAS  Google Scholar 

  28. Okamoto S, Hornsten R, Obayashi K, Wijayatunga P, Suhr OB. Continuous development of arrhythmia is observed in Swedish transplant patients with familial amyloidotic polyneuropathy (amyloidogenic transthyretin Val30Met variant). Liver Transpl. 2011;17:122–8.

    Article  PubMed  Google Scholar 

  29. Olofsson BO, Backman C, Karp K, Suhr OB. Progression of cardiomyopathy after liver transplantation in patients with familial amyloidotic polyneuropathy. Portuguese type. Transplantation. 2002;73:745–51.

    Article  PubMed  Google Scholar 

  30. Sekijima Y, Kelly JW, Ikeda S. Pathogenesis of and therapeutic strategies to ameliorate the transthyretin amyloidoses. Curr Pharm Des. 2008;14:3219–30.

    Article  PubMed  CAS  Google Scholar 

  31. Coelho T, Maia L, Martins Da Silva A. Tafamidis (Fx-1006A): a first-in-class disease-modifying therapy for transthyretin familial amyloid polyneuropathy. Neurology. 2010;74:A286.

    Google Scholar 

  32. Tanaka K, Yamada T, Ohyagi Y, Asahara H, Horiuchi I, Kira J. Suppression of transthyretin expression by ribozymes: a possible therapy for familial amyloidotic polyneuropathy. J Neurol Sci. 2001;183:79–84.

    Article  PubMed  CAS  Google Scholar 

  33. Kurosawa T, Igarashi S, Nishizawa M, Onodera O. Selective silencing of a mutant transthyretin allele by small interfering RNAs. Biochem Biophys Res Commun. 2005;337:1012–8.

    Article  PubMed  CAS  Google Scholar 

  34. Benson MD, Kluve-Beckerman B, Zeldenrust SR, et al. Targeted suppression of an amyloidogenic transthyretin with antisense oligonucleotides. Muscle Nerve. 2006;33:609–18.

    Article  PubMed  CAS  Google Scholar 

  35. Suhr O, Danielsson A, Holmgren G, Steen L. Malnutrition and gastrointestinal dysfunction as prognostic factors for survival in familial amyloidotic polyneuropathy. J Intern Med. 1994;235:479–85.

    Article  PubMed  CAS  Google Scholar 

  36. Okamoto S, Wixner J, Obayashi K, et al. Liver transplantation for familial amyloidotic polyneuropathy: impact on Swedish patients’ survival. Liver Transpl. 2009;15:1229–35.

    Article  PubMed  Google Scholar 

  37. Van Allen MW, Frohlich JA, Davis JR. Inherited predisposition to generalized amyloidosis. Clinical and pathological study of a family with neuropathy, nephropathy, and peptic ulcer. Neurology. 1969;19:10–25.

    Article  PubMed  Google Scholar 

  38. Raimondi S, Guglielmi F, Giorgetti S, et al. Effects of the known pathogenic mutations on the aggregation pathway of the amyloidogenic peptide of apolipoprotein A-I. J Mol Biol. 2011;407:465–76.

    Article  PubMed  CAS  Google Scholar 

  39. Testro AG, Brennan SO, Macdonell RAL, Hawkins PN, Angus PW. Hereditary amyloidosis with progressive peripheral neuropathy associated with apolipoprotein Al Gly26Arg: outcome of hepatorenal transplantation. Liver Transpl. 2007;13:1028–31.

    Article  PubMed  Google Scholar 

  40. Meretoja J. Familial systemic paramyloidosis with lattice dystrophy of the cornea, progressive cranial neuropathy, skin changes and various internal symptoms. A previously unrecognized heritable syndrome. Ann Clin Res. 1969;1:314–24.

    PubMed  CAS  Google Scholar 

  41. Ridley A. The neuropathy of acute intermittent porphyria. Q J Med. 1969;38:307–33.

    PubMed  CAS  Google Scholar 

  42. King PH, Petersen NE, Rakhra R, Schreiber WE. Porphyria presenting with bilateral radial motor neuropathy: evidence of a novel gene mutation. Neurology. 2002;58:1118–21.

    Article  PubMed  CAS  Google Scholar 

  43. Albers JW, Robertson Jr WC, Daube JR. Electrodiagnostic findings in acute porphyric neuropathy. Muscle Nerve. 1978;1:292–6.

    Article  PubMed  CAS  Google Scholar 

  44. Thunell S, Pomp E, Brun A. Guide to drug porphyrogenicity prediction and drug prescription in the acute porphyrias. Br J Clin Pharmacol. 2007;64:668–79.

    Article  PubMed  CAS  Google Scholar 

  45. Suarez JI, Cohen ML, Larkin J, Kernich CA, Hricik DE, Daroff RB. Acute intermittent porphyria: clinicopathologic correlation. Report of a case and review of the literature. Neurology. 1997;48:1678–83.

    Article  PubMed  CAS  Google Scholar 

  46. Solis C, Martinez-Bermejo A, Naidich TP, et al. Acute intermittent porphyria: studies of the severe homozygous dominant disease provide insights into the neurologic attacks in acute porphyrias. Arch Neurol. 2004;61:1764–70.

    Article  PubMed  Google Scholar 

  47. Meyer UA, Schuurmans MM, Lindberg RL. Acute porphyrias: pathogenesis of neurological manifestations. Semin Liver Dis. 1998;18:43–52.

    Article  PubMed  CAS  Google Scholar 

  48. Lin CS, Lee MJ, Park SB, Kiernan MC. Purple pigments: the pathophysiology of acute porphyric neuropathy. Clin Neurophysiol. 2011;122:2336–44.

    Article  PubMed  CAS  Google Scholar 

  49. Floderus Y, Shoolingin-Jordan PM, Harper P. Acute intermittent porphyria in Sweden. Molecular, functional and clinical consequences of some new mutations found in the porphobilinogen deaminase gene. Clin Genet. 2002;62:288–97.

    Article  PubMed  CAS  Google Scholar 

  50. Elder GH, Hift RJ, Meissner PN. The acute porphyrias. Lancet. 1997;349:1613–7.

    Article  PubMed  CAS  Google Scholar 

  51. Bonkovsky HL, Barnard GF. Diagnosis of porphyric syndromes: a practical approach in the era of molecular biology. Semin Liver Dis. 1998;18:57–65.

    Article  PubMed  CAS  Google Scholar 

  52. Lin CS, Krishnan AV, Lee MJ, et al. Nerve function and dysfunction in acute intermittent porphyria. Brain. 2008;131:2510–9.

    Article  PubMed  Google Scholar 

  53. Anderson KE, Bloomer JR, Bonkovsky HL, et al. Recommendations for the diagnosis and treatment of the acute porphyrias. Ann Intern Med. 2005;142:439–50.

    Article  PubMed  Google Scholar 

  54. Sardh E, Harper P, Andersson DE, Floderus Y. Plasma porphobilinogen as a sensitive biomarker to monitor the clinical and therapeutic course of acute intermittent porphyria attacks. Eur J Intern Med. 2009;20:201–7.

    Article  PubMed  CAS  Google Scholar 

  55. Hahn M, Gildemeister OS, Krauss GL, et al. Effects of new anticonvulsant medications on porphyrin synthesis in cultured liver cells: potential implications for patients with acute porphyria. Neurology. 1997;49:97–106.

    Article  PubMed  CAS  Google Scholar 

  56. Sardh E, Rejkjaer L, Andersson DE, Harper P. Safety, pharmacokinetics and pharmacodynamics of recombinant human porphobilinogen deaminase in healthy subjects and asymptomatic carriers of the acute intermittent porphyria gene who have increased porphyrin precursor excretion. Clin Pharmacokinet. 2007;46:335–49.

    Article  PubMed  CAS  Google Scholar 

  57. Stein JA, Tschudy DP. Acute intermittent porphyria. A clinical and biochemical study of 46 patients. Medicine (Baltimore). 1970;49:1–16.

    CAS  Google Scholar 

  58. Fullerton PM. Peripheral nerve conduction in metachromatic leukodystrophy (sulphatide lipidosis). J Neurol Neurosurg Psychiatry. 1964;27:100–5.

    Article  PubMed  CAS  Google Scholar 

  59. Pilz H. Late adult metachromatic leukodystrophy. Arylsulfatase A activity of leukocytes in two families. Arch Neurol. 1972;27:87–90.

    Article  PubMed  CAS  Google Scholar 

  60. De Silva KL, Pearce J. Neuropathy of metachromatic leukodystrophy. J Neurol Neurosurg Psychiatry. 1973;36:30–3.

    Article  PubMed  Google Scholar 

  61. Yudell A, Gomez MR, Lambert EH, Dockerty MB. The neuropathy of sulfatide lipidosis (metachromatic leukodystrophy). Neurology. 1967;17:103–11. Passim.

    Article  PubMed  CAS  Google Scholar 

  62. Felice KJ, Gomez Lira M, Natowicz M, et al. Adult-onset MLD: a gene mutation with isolated polyneuropathy. Neurology. 2000;55:1036–9.

    Article  PubMed  CAS  Google Scholar 

  63. Cameron CL, Kang PB, Burns TM, Darras BT, Jones Jr HR. Multifocal slowing of nerve conduction in metachromatic leukodystrophy. Muscle Nerve. 2004;29:531–6.

    Article  PubMed  Google Scholar 

  64. Comabella M, Waye JS, Raguer N, et al. Late-onset metachromatic leukodystrophy clinically presenting as isolated peripheral neuropathy: compound heterozygosity for the IVS2+1G–> A mutation and a newly identified missense mutation (Thr408Ile) in a Spanish family. Ann Neurol. 2001;50:108–12.

    Article  PubMed  CAS  Google Scholar 

  65. Coulter-Mackie MB, Applegarth DA, Toone JR, Gagnier L, Anzarut AR, Hendson G. Isolated peripheral neuropathy in atypical metachromatic leukodystrophy: a recurrent mutation. Can J Neurol Sci. 2002;29:159–63.

    PubMed  Google Scholar 

  66. Fuller M, Tucker JN, Lang DL, et al. Screening patients referred to a metabolic clinic for lysosomal storage disorders. J Med Genet. 2011;48:422–5.

    Article  PubMed  Google Scholar 

  67. Dayan AD. Peripheral neuropathy of metachromatic leucodystrophy: observations on segmental demyelination and remyelination and the intracellular distribution of sulphatide. J Neurol Neurosurg Psychiatry. 1967;30:311–8.

    Article  PubMed  CAS  Google Scholar 

  68. Norman RM, Urich H, Tingey AH. Metachromatic leucoencephalopathy: a form of lipidosis. Brain. 1960;83:369–80.

    Article  PubMed  CAS  Google Scholar 

  69. Webster HD. Schwann cell alterations in metachromatic leukodystrophy: preliminary phase and electron microscopic observations. J Neuropathol Exp Neurol. 1962;21:534–54.

    Article  PubMed  CAS  Google Scholar 

  70. Thomas PK, King RH, Kocen RS, Brett EM. Comparative ultrastructural observations on peripheral nerve abnormalities in the late infantile, juvenile and late onset forms of metachromatic leukodystrophy. Acta Neuropathol. 1977;39:237–45.

    Article  PubMed  CAS  Google Scholar 

  71. O’Brien JS. A molecular defect of myelination. Biochem Biophys Res Commun. 1964;15:484–90.

    Article  PubMed  Google Scholar 

  72. Leitch GJ, Horrocks LA, Samorajski T. Effects of cations on isolated bovine optic nerve myelin. J Neurochem. 1969;16:1347–54.

    Article  PubMed  CAS  Google Scholar 

  73. Ginsberg L, Gershfeld NL. Membrane bilayer instability and the pathogenesis of disorders of myelin. Neurosci Lett. 1991;130:133–6.

    Article  PubMed  CAS  Google Scholar 

  74. Pilz H, Hopf HC. A preclinical case of late adult metachromatic leukodystrophy? Manifestation only with lipid abnormalities in urine, enzyme deficiency and decrease of nerve conduction velocity. J Neurol Neurosurg Psychiatry. 1972;35:360–4.

    Article  PubMed  CAS  Google Scholar 

  75. Haberlandt E, Scholl-Burgi S, Neuberger J, et al. Peripheral neuropathy as the sole initial finding in three children with infantile metachromatic leukodystrophy. Eur J Paediatr Neurol. 2009;13:257–60.

    Article  PubMed  CAS  Google Scholar 

  76. Orchard PJ, Tolar J. Transplant outcomes in leukodystrophies. Semin Hematol. 2010;47:70–8.

    Article  PubMed  CAS  Google Scholar 

  77. Krivit W. Allogeneic stem cell transplantation for the treatment of lysosomal and peroxisomal metabolic diseases. Springer Semin Immunopathol. 2004;26:119–32.

    Article  PubMed  Google Scholar 

  78. Dali C, Hanson LG, Barton NW, Fogh J, Nair N, Lund AM. Brain N-acetylaspartate levels correlate with motor function in metachromatic leukodystrophy. Neurology. 2010;75:1896–903.

    Article  CAS  Google Scholar 

  79. Biffi A, Aubourg P, Cartier N. Gene therapy for leukodystrophies. Hum Mol Genet. 2011;20:R42–53.

    Article  PubMed  CAS  Google Scholar 

  80. Gieselmann V, Krageloh-Mann I. Metachromatic leukodystrophy–an update. Neuropediatrics. 2010;41:1–6.

    Article  PubMed  CAS  Google Scholar 

  81. Austin JH. Studies in metachromatic leukodystrophy. XII. Multiple sulfatase deficiency. Arch Neurol. 1973;28:258–64.

    Article  PubMed  CAS  Google Scholar 

  82. Shapiro LJ, Aleck KA, Kaback MM, et al. Metachromatic leukodystrophy without arylsulfatase A deficiency. Pediatr Res. 1979;13:1179–81.

    Article  PubMed  CAS  Google Scholar 

  83. Tappino B, Biancheri R, Mort M, et al. Identification and characterization of 15 novel GALC gene mutations causing Krabbe disease. Hum Mutat. 2010;31:E1894–914.

    Article  PubMed  Google Scholar 

  84. Fiumara A, Barone R, Arena A, et al. Krabbe leukodystrophy in a selected population with high rate of late onset forms: longer survival linked to c.121G> A (p.Gly41Ser) mutation. Clin Genet. 2011;80(5):452–8.

    Article  PubMed  CAS  Google Scholar 

  85. Kolodny EH, Raghavan S, Krivit W. Late-onset Krabbe disease (globoid cell leukodystrophy): clinical and biochemical features of 15 cases. Dev Neurosci. 1991;13:232–9.

    Article  PubMed  CAS  Google Scholar 

  86. Marks HG, Scavina MT, Kolodny EH, Palmieri M, Childs J. Krabbe’s disease presenting as a peripheral neuropathy. Muscle Nerve. 1997;20:1024–8.

    Article  PubMed  CAS  Google Scholar 

  87. Bernal OG, Lenn N. Multiple cranial nerve enhancement in early infantile Krabbe’s disease. Neurology. 2000;54:2348–9.

    Article  PubMed  CAS  Google Scholar 

  88. Vasconcellos E, Smith M. MRI nerve root enhancement in Krabbe disease. Pediatr Neurol. 1998;19:151–2.

    Article  PubMed  CAS  Google Scholar 

  89. Dunn HG, Lake BD, Dolman CL, Wilson J. The neuropathy of Krabbe’s infantile cerebral sclerosis (globoid cell leucodystrophy). Brain. 1969;92:329–44.

    Article  PubMed  CAS  Google Scholar 

  90. Lake BD. Segmental demyelination of peripheral nerves in Krabbe’s disease. Nature. 1968;217:171–2.

    Article  PubMed  CAS  Google Scholar 

  91. Hogan GR, Gutmann L, Chou SM. The peripheral neuropathy of Krabbe’s (globoid) leukodystrophy. Neurology. 1969;19:1094–100.

    Article  PubMed  CAS  Google Scholar 

  92. Bischoff A, Ulrich J. Peripheral neuropathy in globoid cell leukodystrophy (Krabbe’s disease). Ultrastructural and histochemical findings. Brain. 1969;92:861–70.

    Article  PubMed  CAS  Google Scholar 

  93. Hoogerbrugge PM, Suzuki K, Suzuki K, et al. Donor-derived cells in the central nervous system of twitcher mice after bone marrow transplantation. Science. 1988;239:1035–8.

    Article  PubMed  CAS  Google Scholar 

  94. Siddiqi ZA, Sanders DB, Massey JM. Peripheral neuropathy in Krabbe disease: effect of hematopoietic stem cell transplantation. Neurology. 2006;67:268–72.

    Article  PubMed  Google Scholar 

  95. Escolar ML, Poe MD, Provenzale JM, et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med. 2005;352:2069–81.

    Article  PubMed  CAS  Google Scholar 

  96. Mosser J, Douar AM, Sarde CO, et al. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature. 1993;361:726–30.

    Article  PubMed  CAS  Google Scholar 

  97. Di Rocco M, Doria-Lamba L, Caruso U. Monozygotic twins with X-linked adrenoleukodystrophy and different phenotypes. Ann Neurol. 2001;50:424.

    Article  PubMed  Google Scholar 

  98. Willems PJ, Vits L, Wanders RJ, et al. Linkage of DNA markers at Xq28 to adrenoleukodystrophy and adrenomyeloneuropathy present within the same family. Arch Neurol. 1990;47:665–9.

    Article  PubMed  CAS  Google Scholar 

  99. Bezman L, Moser AB, Raymond GV, et al. Adrenoleukodystrophy: incidence, new mutation rate, and results of extended family screening. Ann Neurol. 2001;49:512–7.

    Article  PubMed  CAS  Google Scholar 

  100. Griffin JW, Goren E, Schaumburg H, Engel WK, Loriaux L. Adrenomyeloneuropathy: a probable variant of adrenoleukodystrophy. I. Clinical and endocrinologic aspects. Neurology. 1977;27:1107–13.

    Article  PubMed  CAS  Google Scholar 

  101. Moser HW, Loes DJ, Melhem ER. X-linked adrenoleukodystrophy: overview and prognosis as a function of age and brain magnetic resonance imaging abnormality. A study involving 372 patients. Neuropediatrics. 2000;31:227–39.

    Article  PubMed  CAS  Google Scholar 

  102. van Geel BM, Bezman L, Loes DJ, Moser HW, Raymond GV. Evolution of phenotypes in adult male patients with X-linked adrenoleukodystrophy. Ann Neurol. 2001;49:186–94.

    Article  PubMed  Google Scholar 

  103. O’Neill GN, Aoki M, Brown Jr RH. ABCD1 translation-initiator mutation demonstrates genotype-phenotype correlation for AMN. Neurology. 2001;57:1956–62.

    Article  PubMed  Google Scholar 

  104. Chaudhry V, Moser HW, Cornblath DR. Nerve conduction studies in adrenomyeloneuropathy. J Neurol Neurosurg Psychiatry. 1996;61:181–5.

    Article  PubMed  CAS  Google Scholar 

  105. Eichler FS, Ren JQ, Cossoy M, et al. Is microglial apoptosis an early pathogenic change in cerebral X-linked adrenoleukodystrophy? Ann Neurol. 2008;63:729–42.

    Article  PubMed  Google Scholar 

  106. Hein S, Schonfeld P, Kahlert S, Reiser G. Toxic effects of X-linked adrenoleukodystrophy-associated, very long chain fatty acids on glial cells and neurons from rat hippocampus in culture. Hum Mol Genet. 2008;17:1750–61.

    Article  PubMed  CAS  Google Scholar 

  107. Powers JM, Schaumberg HH. Adreno-leukodystrophy. Similar ultrastructural changes in adrenal cortical and Schwann cells. Arch Neurol. 1974;30:406–8.

    Article  PubMed  CAS  Google Scholar 

  108. Schaumburg HH, Powers JM, Raine CS, et al. Adrenomyeloneuropathy: a probable variant of adrenoleukodystrophy. II. General pathologic, neuropathologic, and biochemical aspects. Neurology. 1977;27:1114–9.

    Article  PubMed  CAS  Google Scholar 

  109. Powers JM, DeCiero DP, Cox C, et al. The dorsal root ganglia in adrenomyeloneuropathy: neuronal atrophy and abnormal mitochondria. J Neuropathol Exp Neurol. 2001;60:493–501.

    PubMed  CAS  Google Scholar 

  110. Mastroeni R, Bensadoun JC, Charvin D, Aebischer P, Pujol A, Raoul C. Insulin-like growth factor-1 and neurotrophin-3 gene therapy prevents motor decline in an X-linked adrenoleukodystrophy mouse model. Ann Neurol. 2009;66:117–22.

    Article  PubMed  Google Scholar 

  111. Shapiro E, Krivit W, Lockman L, et al. Long-term effect of bone-marrow transplantation for childhood-onset cerebral X-linked adrenoleukodystrophy. Lancet. 2000;356:713–8.

    Article  PubMed  CAS  Google Scholar 

  112. Schonberger S, Roerig P, Schneider DT, Reifenberger G, Gobel U, Gartner J. Genotype and protein expression after bone marrow transplantation for adrenoleukodystrophy. Arch Neurol. 2007;64:651–7.

    Article  PubMed  Google Scholar 

  113. Peters C, Charnas LR, Tan Y, et al. Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. Blood. 2004;104:881–8.

    Article  PubMed  CAS  Google Scholar 

  114. Aubourg P, Adamsbaum C, Lavallard-Rousseau MC, et al. A two-year trial of oleic and erucic acids (“Lorenzo’s oil”) as treatment for adrenomyeloneuropathy. N Engl J Med. 1993;329:745–52.

    Article  PubMed  CAS  Google Scholar 

  115. Restuccia D, Di Lazzaro V, Valeriani M, et al. Neurophysiologic follow-up of long-term dietary treatment in adult-onset adrenoleukodystrophy. Neurology. 1999;52:810–6.

    Article  PubMed  CAS  Google Scholar 

  116. Moser HW, Raymond GV, Lu SE, et al. Follow-up of 89 asymptomatic patients with adrenoleukodystrophy treated with Lorenzo’s oil. Arch Neurol. 2005;62:1073–80.

    Article  PubMed  Google Scholar 

  117. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009;326:818–23.

    Article  PubMed  CAS  Google Scholar 

  118. Aubourg P, Scotto J, Rocchiccioli F, Feldmann-Pautrat D, Robain O. Neonatal adrenoleukodystrophy. J Neurol Neurosurg Psychiatry. 1986;49:77–86.

    Article  PubMed  CAS  Google Scholar 

  119. Kocen RS, Lloyd JK, Lascelles PT, Fosbrooke AS, Willims D. Familial alpha-lipoprotein deficiency (Tangier disease) with neurological abnormalities. Lancet. 1967;1:1341–5.

    Article  PubMed  CAS  Google Scholar 

  120. Zyss J, Béhin A, Couvert P, et al. Clinical and electrophysiological characteristics of neuropathy associated with Tangier disease. J Neurol. 2012;259:1222–6.

    Google Scholar 

  121. Pietrini V, Pinna V, Milone FF. Tangier disease: central nervous system impairment in a case of syringomyelia-like syndrome. J Neurol Sci. 1990;98:245–50.

    Article  PubMed  CAS  Google Scholar 

  122. Theaudin M, Couvert P, Fournier E, et al. Lewis-Sumner syndrome and Tangier disease. Arch Neurol. 2008;65:968–70.

    Article  PubMed  Google Scholar 

  123. Pollock M, Nukada H, Frith RW, Simcock JP, Allpress S. Peripheral neuropathy in Tangier disease. Brain. 1983;106(Pt 4):911–28.

    Article  PubMed  Google Scholar 

  124. Serfaty-Lacrosniere C, Civeira F, Lanzberg A, et al. Homozygous Tangier disease and cardiovascular disease. Atherosclerosis. 1994;107:85–98.

    Article  PubMed  CAS  Google Scholar 

  125. Oram JF. ATP-binding cassette transporter A1 and cholesterol trafficking. Curr Opin Lipidol. 2002;13:373–81.

    Article  PubMed  CAS  Google Scholar 

  126. Kocen RS, King RH, Thomas PK, Haas LF. Nerve biopsy findings in two cases of Tangier disease. Acta Neuropathol. 1973;26:317–27.

    Article  PubMed  CAS  Google Scholar 

  127. Dyck PJ, Ellefson RD, Yao JK, Herbert PN. Adult-onset of Tangier disease: 1. Morphometric and pathologic studies suggesting delayed degradation of neutral lipids after fiber degeneration. J Neuropathol Exp Neurol. 1978;37:119–37.

    Article  PubMed  CAS  Google Scholar 

  128. Cai Z, Blumbergs PC, Cash K, et al. Paranodal pathology in Tangier disease with remitting-relapsing multifocal neuropathy. J Clin Neurosci. 2006;13:492–7.

    Article  PubMed  CAS  Google Scholar 

  129. Sharp D, Blinderman L, Combs KA, et al. Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinaemia. Nature. 1993;365:65–9.

    Article  PubMed  CAS  Google Scholar 

  130. Kornzweig AL. Bassen-Kornzweig syndrome. Present status. J Med Genet. 1970;7:271–6.

    Article  PubMed  CAS  Google Scholar 

  131. Wichman A, Buchthal F, Pezeshkpour GH, Gregg RE. Peripheral neuropathy in abetalipoproteinemia. Neurology. 1985;35:1279–89.

    Article  PubMed  CAS  Google Scholar 

  132. Muller DP, Lloyd JK, Bird AC. Long-term management of abetalipoproteinaemia. Possible role for vitamin E. Arch Dis Child. 1977;52:209–14.

    Article  PubMed  CAS  Google Scholar 

  133. Tarugi P, Averna M. Hypobetalipoproteinemia: genetics, biochemistry, and clinical spectrum. Adv Clin Chem. 2011;54:81–107.

    Article  PubMed  CAS  Google Scholar 

  134. Fabry JJ. Ein beitrag zur kenntniss der purpura haemorrhagica nodularis (purpura papulosa haemorrhagica hebrae). Arch Dermatol Res. 1898;43:187–200.

    Article  Google Scholar 

  135. Luciano CA, Russell JW, Banerjee TK, et al. Physiological characterization of neuropathy in Fabry’s disease. Muscle Nerve. 2002;26:622–9.

    Article  PubMed  Google Scholar 

  136. Scott LJ, Griffin JW, Luciano C, et al. Quantitative analysis of epidermal innervation in Fabry disease. Neurology. 1999;52:1249–54.

    Article  PubMed  CAS  Google Scholar 

  137. Whybra C, Kampmann C, Krummenauer F, et al. The Mainz Severity Score Index: a new instrument for quantifying the Anderson-Fabry disease phenotype, and the response of patients to enzyme replacement therapy. Clin Genet. 2004;65:299–307.

    Article  PubMed  CAS  Google Scholar 

  138. Rolfs A, Bottcher T, Zschiesche M, et al. Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet. 2005;366:1794–6.

    Article  PubMed  Google Scholar 

  139. Fellgiebel A, Muller MJ, Ginsberg L. CNS manifestations of Fabry’s disease. Lancet Neurol. 2006;5:791–5.

    Article  PubMed  Google Scholar 

  140. Fellgiebel A, Keller I, Marin D, et al. Diagnostic utility of different MRI and MR angiography measures in Fabry disease. Neurology. 2009;72:63–8.

    Article  PubMed  CAS  Google Scholar 

  141. Deegan PB, Baehner AF, Barba Romero MA, et al. Natural history of Fabry disease in females in the Fabry Outcome Survey. J Med Genet. 2006;43:347–52.

    Article  PubMed  CAS  Google Scholar 

  142. Heltianu C, Costache G, Azibi K, Poenaru L, Simionescu M. Endothelial nitric oxide synthase gene polymorphisms in Fabry’s disease. Clin Genet. 2002;61:423–9.

    Article  PubMed  CAS  Google Scholar 

  143. Clarke JT. Narrative review: fabry disease. Ann Intern Med. 2007;146:425–33.

    Article  PubMed  Google Scholar 

  144. Nakao S, Kodama C, Takenaka T, et al. Fabry disease: detection of undiagnosed hemodialysis patients and identification of a “renal variant” phenotype. Kidney Int. 2003;64:801–7.

    Article  PubMed  Google Scholar 

  145. Spada MM. High incidence of later-onset Fabry disease revealed by newborn screening. Am J Hum Genet. 2006;79:31–40.

    Article  PubMed  CAS  Google Scholar 

  146. Ohnishi AA. Loss of small peripheral sensory neurons in Fabry disease. Histologic and morphometric evaluation of cutaneous nerves, spinal ganglia, and posterior columns. Arch Neurol. 1974;31:120–7.

    Article  Google Scholar 

  147. Sima AA. Involvement of peripheral nerve and muscle in Fabry’s disease. Histologic, ultrastructural, and morphometric studies. Arch Neurol. 1978;35:291–301.

    Article  PubMed  CAS  Google Scholar 

  148. Moore DF. The cerebral vasculopathy of Fabry disease. J Neurol Sci. 2007;257:258–63.

    Article  PubMed  Google Scholar 

  149. Schiffmann R, Kopp JB, Austin 3rd HA. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA. 2001;285:2743–9.

    Article  PubMed  CAS  Google Scholar 

  150. Eng CM, Guffon N, Wilcox WR, et al. Safety and efficacy of recombinant human alpha-galactosidase a–replacement therapy in Fabry’s disease. N Engl J Med. 2001;345:9–16.

    Article  PubMed  CAS  Google Scholar 

  151. Schiffmann R, Floeter MK, Dambrosia JM, et al. Enzyme replacement therapy improves peripheral nerve and sweat function in Fabry disease. Muscle Nerve. 2003;28:703–10.

    Article  PubMed  CAS  Google Scholar 

  152. Uceyler N, He L, Schonfeld D, et al. Small fibers in Fabry disease: baseline and follow-up data under enzyme replacement therapy. J Peripher Nerv Syst. 2011;16:304–14.

    Article  PubMed  CAS  Google Scholar 

  153. Desnick RJ, Brady R, Barranger J, et al. Fabry disease, an under-recognized multisystemic disorder: expert recommendations for diagnosis, management, and enzyme replacement therapy. Ann Intern Med. 2003;138:338–46.

    Article  PubMed  Google Scholar 

  154. Eng CM, Germain DP, Banikazemi M, et al. Fabry disease: guidelines for the evaluation and management of multi-organ system involvement. Genet Med. 2006;8:539–48.

    Article  PubMed  Google Scholar 

  155. Qin G, Takenaka T, Telsch K, et al. Preselective gene therapy for Fabry disease. Proc Natl Acad Sci USA. 2001;98:3428–33.

    Article  PubMed  CAS  Google Scholar 

  156. Ishii S, Yoshioka H, Mannen K, Kulkarni AB, Fan JQ. Transgenic mouse expressing human mutant alpha-galactosidase A in an endogenous enzyme deficient background: a biochemical animal model for studying active-site specific chaperone therapy for Fabry disease. Biochim Biophys Acta. 2004;1690:250–7.

    Article  PubMed  CAS  Google Scholar 

  157. Tajima Y, Kawashima I, Tsukimura T, et al. Use of a modified alpha-N-acetylgalactosaminidase in the development of enzyme replacement therapy for Fabry disease. Am J Hum Genet. 2009;85:569–80.

    Article  PubMed  CAS  Google Scholar 

  158. Mehta A, Beck M, Elliott P, et al. Enzyme replacement therapy with agalsidase alfa in patients with Fabry’s disease: an analysis of registry data. Lancet. 2009;374:1986–96.

    Article  PubMed  CAS  Google Scholar 

  159. Eng CM, Fletcher J, Wilcox WR, et al. Fabry disease: baseline medical characteristics of a cohort of 1765 males and females in the Fabry Registry. J Inherit Metab Dis. 2007;30:184–92.

    Article  PubMed  CAS  Google Scholar 

  160. Hughes DA, Malmenas M, Deegan PB, et al. Fabry International Prognostic Index: a predictive severity score for Anderson-Fabry disease. J Med Genet. 2012;49:212–20.

    Article  PubMed  CAS  Google Scholar 

  161. Verrips A, Hoefsloot LH, Steenbergen GC, et al. Clinical and molecular genetic characteristics of patients with cerebrotendinous xanthomatosis. Brain. 2000;123(Pt 5):908–19.

    Article  PubMed  Google Scholar 

  162. Donaghy M, King RH, McKeran RO, Schwartz MS, Thomas PK. Cerebrotendinous xanthomatosis: clinical, electrophysiological and nerve biopsy findings, and response to treatment with chenodeoxycholic acid. J Neurol. 1990;237:216–9.

    Article  PubMed  CAS  Google Scholar 

  163. Argov Z, Soffer D, Eisenberg S, Zimmerman Y. Chronic demyelinating peripheral neuropathy in cerebrotendinous xanthomatosis. Ann Neurol. 1986;20:89–91.

    Article  PubMed  CAS  Google Scholar 

  164. Meiner V, Meiner Z, Reshef A, Bjorkhem I, Leitersdorf E. Cerebrotendinous xanthomatosis: molecular diagnosis enables presymptomatic detection of a treatable disease. Neurology. 1994;44:288–90.

    Article  PubMed  CAS  Google Scholar 

  165. Jansen GA, Ofman R, Ferdinandusse S, et al. Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nat Genet. 1997;17:190–3.

    Article  PubMed  CAS  Google Scholar 

  166. Mihalik SJ, Morrell JC, Kim D, Sacksteder KA, Watkins PA, Gould SJ. Identification of PAHX, a Refsum disease gene. Nat Genet. 1997;17:185–9.

    Article  PubMed  CAS  Google Scholar 

  167. Ronicke S, Kruska N, Kahlert S, Reiser G. The influence of the branched-chain fatty acids pristanic acid and Refsum disease-associated phytanic acid on mitochondrial functions and calcium regulation of hippocampal neurons, astrocytes, and oligodendrocytes. Neurobiol Dis. 2009;36:401–10.

    Article  PubMed  CAS  Google Scholar 

  168. Ferdinandusse S, Zomer AW, Komen JC, et al. Ataxia with loss of Purkinje cells in a mouse model for Refsum disease. Proc Natl Acad Sci USA. 2008;105:17712–7.

    Article  PubMed  CAS  Google Scholar 

  169. Horn MA, van den Brink DM, Wanders RJ, et al. Phenotype of adult Refsum disease due to a defect in peroxin 7. Neurology. 2007;68:698–700.

    Article  PubMed  CAS  Google Scholar 

  170. Verhoeven NM, Jakobs C, ten Brink HJ, Wanders RJ, Roe CR. Studies on the oxidation of phytanic acid and pristanic acid in human fibroblasts by acylcarnitine analysis. J Inherit Metab Dis. 1998;21:753–60.

    Article  PubMed  CAS  Google Scholar 

  171. Fardeau M, Engel WK. Ultrastructural study of a peripheral nerve biopsy in Refsum’s disease. J Neuropathol Exp Neurol. 1969;28:278–94.

    Article  PubMed  CAS  Google Scholar 

  172. Eldjarn L, Try K, Stokke O, et al. Dietary effects on serum-­phytanic-acid levels and on clinical manifestations in heredopathia atactica polyneuritiformis. Lancet. 1966;1:691–3.

    Article  PubMed  CAS  Google Scholar 

  173. Kohlschutter A, Santer R, Lukacs Z, Altenburg C, Kemper MJ, Ruther K. A child with night blindness: preventing serious symptoms of Refsum disease. J Child Neurol. 2011;27(5):654–6.

    Article  PubMed  Google Scholar 

  174. Wanders RJ, Komen J, Kemp S. Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans. FEBS J. 2011;278:182–94.

    Article  PubMed  CAS  Google Scholar 

  175. Poulos A, Pollard AC, Mitchell JD, Wise G, Mortimer G. Patterns of Refsum’s disease. Phytanic acid oxidase deficiency. Arch Dis Child. 1984;59:222–9.

    Article  PubMed  CAS  Google Scholar 

  176. McLean BN, Allen J, Ferdinandusse S, Wanders RJ. A new defect of peroxisomal function involving pristanic acid: a case report. J Neurol Neurosurg Psychiatry. 2002;72:396–9.

    Article  PubMed  CAS  Google Scholar 

  177. Maziere C, Maziere JC, Mora L, Lageron A, Polonovski C, Polonovski J. Alterations in cholesterol metabolism in cultured fibroblasts from patients with Niemann-Pick disease type C. J Inherit Metab Dis. 1987;10:339–46.

    Article  PubMed  CAS  Google Scholar 

  178. Schuchman EH. The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann-Pick disease. J Inherit Metab Dis. 2007;30:654–63.

    Article  PubMed  CAS  Google Scholar 

  179. Gumbinas M, Larsen M, Mei Liu H. Peripheral neuropathy in classic Niemann-Pick disease: ultrastructure of nerves and skeletal muscles. Neurology. 1975;25:107–13.

    Article  PubMed  CAS  Google Scholar 

  180. Landrieu P, Said G. Peripheral neuropathy in type A Niemann-Pick disease. A morphological study. Acta Neuropathol. 1984;63:66–71.

    Article  PubMed  CAS  Google Scholar 

  181. Wasserstein MP, Aron A, Brodie SE, Simonaro C, Desnick RJ, McGovern MM. Acid sphingomyelinase deficiency: prevalence and characterization of an intermediate phenotype of Niemann-Pick disease. J Pediatr. 2006;149:554–9.

    Article  PubMed  Google Scholar 

  182. Zafeiriou DI, Triantafyllou P, Gombakis NP, Vargiami E, Tsantali C, Michelakaki E. Niemann-Pick type C disease associated with peripheral neuropathy. Pediatr Neurol. 2003;29:242–4.

    Article  PubMed  Google Scholar 

  183. Shah AJ, Kapoor N, Crooks GM, et al. Successful hematopoietic stem cell transplantation for Niemann-Pick disease type B. Pediatrics. 2005;116:1022–5.

    Article  PubMed  Google Scholar 

  184. Kirkegaard T, Roth AG, Petersen NH, et al. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature. 2010;463:549–53.

    Article  PubMed  CAS  Google Scholar 

  185. Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE. Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol. 2007;6:765–72.

    Article  PubMed  CAS  Google Scholar 

  186. Mellon SH, Gong W, Schonemann MD. Endogenous and synthetic neurosteroids in treatment of Niemann-Pick type C disease. Brain Res Rev. 2008;57:410–20.

    Article  PubMed  CAS  Google Scholar 

  187. Kanda T, Oda M, Yonezawa M, et al. Peripheral neuropathy in xeroderma pigmentosum. Brain. 1990;113(Pt 4):1025–44.

    Article  PubMed  Google Scholar 

  188. Bradford PT, Goldstein AM, Tamura D, et al. Cancer and neurologic degeneration in xeroderma pigmentosum: long term follow-up characterises the role of DNA repair. J Med Genet. 2011;48:168–76.

    Article  PubMed  Google Scholar 

  189. Rapin I, Lindenbaum Y, Dickson DW, Kraemer KH, Robbins JH. Cockayne syndrome and xeroderma pigmentosum. Neurology. 2000;55:1442–9.

    Article  PubMed  CAS  Google Scholar 

  190. Moosa A, Dubowitz V. Peripheral neuropathy in Cockayne’s syndrome. Arch Dis Child. 1970;45:674–7.

    Article  PubMed  CAS  Google Scholar 

  191. Larnaout A, Belal S, Ben Hamida C, Ben Hamida M, Hentati F. Atypical ataxia telangiectasia with early childhood lower motor neuron degeneration: a clinicopathological observation in three siblings. J Neurol. 1998;245:231–5.

    Article  PubMed  CAS  Google Scholar 

  192. Hiel JA, van Engelen BG, Weemaes CM, et al. Distal spinal muscular atrophy as a major feature in adult-onset ataxia telangiectasia. Neurology. 2006;67:346–9.

    Article  PubMed  CAS  Google Scholar 

  193. Broccoletti T, Del Giudice E, Amorosi S, et al. Steroid-induced improvement of neurological signs in ataxia-telangiectasia patients. Eur J Neurol. 2008;15:223–8.

    Article  PubMed  CAS  Google Scholar 

  194. Gatti RA, Perlman S. A proposed bailout for A-T patients? Eur J Neurol. 2009;16:653–5.

    Article  PubMed  Google Scholar 

  195. Plante-Bordeneuve V, Said G. Familial amyloid polyneuropathy. Lancet Neurol. 2011;10:1086–97.

    Article  PubMed  CAS  Google Scholar 

  196. Thadani H, Deacon A, Peters T. Diagnosis and management of porphyria. BMJ. 2000;320:1647–51.

    Article  PubMed  CAS  Google Scholar 

  197. Bindu PS, Mahadevan A, Taly AB, Christopher R, Gayathri N, Shankar SK. Peripheral neuropathy in metachromatic leucodystrophy. A study of 40 cases from south India. J Neurol Neurosurg Psychiatry. 2005;76:1698–701.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perry K. Richardson MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richardson, P.K., Demarest, S.T. (2014). Inherited Metabolic Neuropathies. In: Katirji, B., Kaminski, H., Ruff, R. (eds) Neuromuscular Disorders in Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6567-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6567-6_27

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6566-9

  • Online ISBN: 978-1-4614-6567-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics