Skip to main content

From Agronomy to Molecular Genetics and Proteomics in an Effort to Improve Nitrogen Use Efficiency in Crops

  • Chapter
  • First Online:
Crop Improvement

Abstract

Agriculture plays significant role in the sustaining human society among most of the developing countries. The agricultural practices are dependent on the application of the nitrogenous fertilizers. The excessive application of nitrogenous fertilizer contributes enormously to the environmental pollution. So, in today’s scenario there is growing need to reduce N fertilizer applications thereby improving plant’s N-use efficiency (NUE). Initially, various studies have been carried out to improve inputs of N fertilizers interaction with soil, water and air but low efficiency of the plant to make use of available N has initiated biological interferences. In this article, we will be discussing the possible technologies applied towards understanding the genetic control of nitrogen use efficiency and its improvement in crops. The classification/identification of suitable target candidates like phenotypes, genotypes or molecular markers, for the upgrading of NUE poses big confront. Therefore, it is necessary to understand NUE and its importance with respect to economy and environment. Also, to figure out the diverse approaches for progress towards NUE enhancement and possibilities for future development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdin MZ, Abrol YP (1997) Effect of split nitrogen application on grain nitrogen and nitrogen harvest of wheat (Triticum aestivum L.) genotypes. In: T Ando, H Matsumoto, S Moni and S Seksya (eds) for sustainable food production and environment. Kluwer Academic Publishers, Dordecht, pp 635–638

    Chapter  Google Scholar 

  • Abdin MZ, Kumar PA, Abrol YP (1992) Biochemical basis of variability in nitrate reductase activity in wheat (Triticum aestivum L.). Plant Cell Physiol 33:951–956

    CAS  Google Scholar 

  • Abdin MA, Dwivedi RK, Abrol YP (2005) Nitrogen in agriculture. In: Singh RP, Shankar N and Jaiwal PK (eds) Nitrogen nutrition and plant productivity. Studium Press LLC, Houston, pp 1–41

    Google Scholar 

  • Abdin MZ, Bansal KC, Kumar PA, Abrol YP (1996) Effect of split nitrogen application on growth and yield of wheat (Triticum aestivum L.) genotypes with different N assimilation potential. J Agron Crop Sci 176:88–92

    Article  Google Scholar 

  • Ali A, Sivakami S, Raghuram N (2007) Effect of nitrate, nitrite, ammonium, glutamate, glutamine and 2-oxoglutarate on the RNA levels and enzyme activities of nitrate reductase and nitrite reductase in rice. Physiol Mol Biol Plants 13:17–25

    CAS  Google Scholar 

  • Amiour N, Imbaud S, Clément G, Agier N, Zivy M, Valot B, Balliau T, Armengaud P, Quilleré I, Cañas R, Tercet-Laforgue T and Hirel B (2012) The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize. J Exp Bot 63:5017–5033

    Article  PubMed  CAS  Google Scholar 

  • Andrews M, Lea PJ, Raven JA, Lindsey K (2004) Can genetic manipulation of plant nitrogen assimilation enzymes result in increased crop yield and greater N-use efficiency? An assessment. Ann App Biol 145:25–40

    Article  CAS  Google Scholar 

  • Balasubramanian V, Alves B, Aulakh MS, Bekunda M, Cai ZC, Drinkwater L, Mugendi D, Van Kessel C, Oenama O (2004) Crop, environmental and management factors affecting N use efficiency. In: Mosier AR, Syers JK and Freney JR (eds) Agricultural and the N cycle: assessing the impacts of fertilizer use on food production and the environment. SCOPE 65, Paris, pp 19–33

    Google Scholar 

  • Bauwe H, ner Kolukisaoglu UÈ (2003) Genetic manipulation of glycine decarboxylation. J Exp Bot 54:1523–1535

    Article  PubMed  CAS  Google Scholar 

  • Bhatt TN, Sasisekharan V, Vijayan M (1979) An analysis of side-chain conformation in proteins. Int J Peptide Protein Res 13:170

    Article  Google Scholar 

  • Bowsher CG, Hucklesby DP, Emes MJ (1993) Induction of ferrodoxin-NADP +  oxidoreductase and ferrodoxin synthesis in pea root plastids during nitrate assimilation. Plant J 3:463–467

    Article  CAS  Google Scholar 

  • Caboche M, Rouzé P (1990) Nitrate reductase: a target for molecular and cellular studies in higher plants. Trends Genet 6:187–192

    Article  PubMed  CAS  Google Scholar 

  • Cai H, Zhou Y, Xiao J, Li X, Zhang Q, Lian X (2009) Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep 28:527–537

    Article  PubMed  CAS  Google Scholar 

  • Castaings L, Marchive C, Meyer C, Krapp A (2011) Nitrogen signalling in Arabidopsis: how to obtain insights into a complex signalling network. J Exp Bot 62:1391–1397

    Article  CAS  Google Scholar 

  • Cerezo M, Flors V, Legaz F, Garcia-Agustin P (2000) Characterization of the low affinity transport system for \(\text{NO}_{3^-} \) uptake by Citrus roots. Plant Sci 160:95–104.

    Article  PubMed  CAS  Google Scholar 

  • Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F, Gojon A (2001) Major alterations of the regulation of root \(\text{NO}_{3^-} \) uptake are associated with the mutation of NRT2.1 and NRT2.2 genes in Arabidopsis. Plant Physiol 127:262–271

    Article  PubMed  CAS  Google Scholar 

  • Chandna R, Kaur G, Iqbal M, Khan I, Ahmad A (2011) Differential response of wheat genotypes to applied nitrogen: biochemical and molecular analysis. Arch Agro Soil Sci. doi:10.1080/03650340.2011.555761

    Google Scholar 

  • Coque M, Gallais A (2006) Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize. Theo App Genet 112:1205–1220

    Article  CAS  Google Scholar 

  • Cox T, Murphy JP, Rodgers DM (1996) Changes in genetic diversity in the red winter wheat regions of the United States. Proc Natl Acad Sci 83:5583–5586

    Article  Google Scholar 

  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868

    PubMed  CAS  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Sci 3:389–395

    Article  Google Scholar 

  • Daran-Lapujade P, Jansen ML, Daran JM, van Gulik W, de Winde JH, Pronk JT (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279:9125–9138

    Article  PubMed  CAS  Google Scholar 

  • Dembinski E, Bany S, Raczynska-Bojanowska K (1995) Asparagine and glutamine in the leaves of high and low protein maize. Acta Physiol Plant 17:361–365

    CAS  Google Scholar 

  • Directorate of Economics and Statistics (2008) The statistical hand book. New Delhi

    Google Scholar 

  • FAO (2008) Yearbook. Food and Agriculture Organization, India

    Google Scholar 

  • Fedorova E, Greenwood JS, Oaks A (1994) In situ localization of nitrate reductase in maize roots. Planta 194:279–286

    Article  CAS  Google Scholar 

  • Fei H, Chaillou S, Hirel B, Mahon JD, Vessey JK (2003) Overexpression of a soybean cytosolic glutamine synthetase gene linked to organ-specific promoters in pea plants grown in different concentrations of nitrate. Planta 216:467–474

    PubMed  CAS  Google Scholar 

  • Feil B, Thiraporn R, Stamp P (1993) In vitro nitrate reductase activity of laboratory-grown seedlings as an indirect selection criterion for maize. Crop Sci Madison 33:1280–1286

    Article  CAS  Google Scholar 

  • Freeman J, Marquez AJ, Wallsgrove RM, Sarrelainen R, Forde BG (1990) Molecular analysis of barley mutants efficient in chloroplast glutamine synthetase. Plant Mol Biol 14:297–311

    Article  PubMed  CAS  Google Scholar 

  • Gallais A, Coque M, Quilleré I, Prioul JL, Hirel B (2006) Modelling post-silking N-fluxes in maize using 15 N-labelling field experiments. New Phytol 172:696–707

    Article  PubMed  CAS  Google Scholar 

  • Glass ADM (2003) Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Crit Rev Plant Sci 22:453–470

    CAS  Google Scholar 

  • Hakeem KR, Ahmad A, Iqbal M, Gucel S, Ozturk M (2011) Nitrogen-efficient rice cultivars can reduce nitrate pollution. Env Sci Poll Res 18:1184–1193

    Article  CAS  Google Scholar 

  • Hakeem KR, Chandna R, Ahmad A, Iqbal M (2012). Physiological and molecular analysis of applied nitrogen in rice (Oryza sativa L.) genotypes. Rice Sci 19(1)

    Google Scholar 

  • Hansch R, Fessel DG, Witt C, Hesberg C, Hoffman C, Walch-Liu P, Engels C, Kruse J, Rennenberg H, Kaiser W, Mendel RR (2001) Tobacco plants that lack expression of functional nitrate reductase in roots show changes in growth rates and metabolites accumulation. J Exp Bot 52:1251–1258

    Article  PubMed  CAS  Google Scholar 

  • Harrison J, Hirel B, Limami A (2004) Variation in nitrate uptake and assimilation between two ecotypes of Lotus japonicus L. and their recombinant inbred lines. Physiol Planta 120:124–131

    Article  CAS  Google Scholar 

  • Hayakawa T, Nakamura T, Hattori F, Mae T, Ojima K, Yamaya T (1994) Cellular localization of NADH-dependent glutamate synthase protein in vascular bundles of unexpanded leaf blades and young grains of rice plants. Planta 193:455–460

    Article  CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  PubMed  CAS  Google Scholar 

  • Hirel B, Martin Tercé-Laforgue T, Gonzalez-Moro MB, Estavillo JM (2005) Physiology of maize. I. A comprehensive and integrated view of nitrogen metabolism in a C4 plant. Physiol Planta 124:167–177

    Article  CAS  Google Scholar 

  • Huang QM, Liu WH, Sun H, Deng X, Su J (2005) Agrobacterium tumefaciens mediated transgenic wheat plants with glutamine synthetases confer tolerance to herbicide. J Plant Ecol 29:338–344

    CAS  Google Scholar 

  • Jain V, Abrol YP (2005) Regulation of nitrate reductase activity by phytohormones in wheat. J Plant Biol 32:43–48

    CAS  Google Scholar 

  • Kant S, Bi Y M, Rothstein SJ (2011) Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J Exp Bot 62:1499–1509

    Article  PubMed  CAS  Google Scholar 

  • Kisaka H, Kida, T, Miwa T (2007) Transgenic tomato plants that overexpress a gene for NADH-dependent glutamate dehydrogenase (legdh1). Breed Sci 57:101–106

    Article  CAS  Google Scholar 

  • Kolkman A, Daran-Lapujade P, Fullaondo A, Olsthoorn MMA, Pronk JT, Monique S, Heck AJR (2006) Proteome analysis of yeast response to various nutrient limitations. Mol Syst Biol 2:1–26

    Article  Google Scholar 

  • Krapp A, Ferrario-Mery S, Touraine B (2002) Nitrogen and signalling. In: Foyer CH and Noctor G (eds) Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Kluwer Academic Publishers, Netherlands, pp 205–225

    Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM (1995) Kinetics of \(\text{NO}_{3^-} \) influx in spruce. Plant Physiol 109:319–326

    PubMed  CAS  Google Scholar 

  • Kumar PA, Parry MAJ, Mitchell RAC, Ahmad A, Abrol YP (2002) Photosynthesis and nitrogen use-efficiency. In: Foyer CH and Noctor G (eds) Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Kluwer Academic Publishers, Dordecht, pp 23–34.

    Google Scholar 

  • Kusano M, Fukushima A, Redestig H, Saito K (2011) Metabolomic approaches toward understanding nitrogen metabolism in plants. J Exp Bot 62:1439−1453

    Google Scholar 

  • Ladha JK (2005) Improving the recovery efficiency of fertilizer nitrogen in cereals. J India Soc Soil Sci 53:472–483

    Google Scholar 

  • Ladha JK, Kirk GJD, Bennett J, Peng S, Reddy CK, Reddy PM, Singh U (1998) Opportunities for increased nitrogen use efficiency from improved lowland rice germplasm. Field Crops Res 56:41–71

    Article  Google Scholar 

  • Lea PJ, Miflin BJ (1974) An alternative route for nitrogen assimilation in plants. Nature 251:680–685

    Article  Google Scholar 

  • Lea US, Leydecker MT, Quilleré I, Meyer C, Lillo C (2006) Posttranslational regulation of nitrate reductase strongly affects the levels of free amino acids and nitrate, whereas transcriptional regulation has only minor Influence. Plant Physiol 140:1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Li MG, Villemur R, Hussey PJ, Silflow CD, Gantt JS, Snusta DP (1993) Differential expression of six glutamine synthetase genes in Zea mays. Plant Mol Biol 23:401–407

    Article  PubMed  CAS  Google Scholar 

  • Lian X, Xing Y, Yan H, Xu C, Li X, Zhang Q (2005) QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet 112:85–96

    Article  PubMed  CAS  Google Scholar 

  • Lillo C, Ruoff P (1992) Hysteretic behavior of nitrate reductase: evidence of an allosteric site for reduced pyridine nucleotides. J Biol Chem 267:13456–13459

    PubMed  CAS  Google Scholar 

  • Lillo C, Appenroth KJ (2001) Light regulation of nitrate reductase in higher plants: which photoreceptors are involved? Plant Biol 3:455–465

    Article  CAS  Google Scholar 

  • Lin B, White JT, Lu W, Xie T, Utleg AG, Yan X, Yi EC, Shannon P, Khrebtukova I, Lange PH, Goodlett DR, Zhou D, Vasicek TJ, Hood L (2005) Evidence for the presence of disease-perturbed networks in prostate cancer cells by genomic and proteomic analyses: a systems approach to disease. Cancer Res 65:3081–91.

    PubMed  CAS  Google Scholar 

  • Lochab S, Pathak RR, Raghuram N (2007) Molecular approaches for enhancement of nitrogen use efficiency in plants. In: Abrol YP, Raghuram N and Sachdev MS (eds) Agricultural nitrogen use and its environmental implications. IK International, New Delhi, pp 327–350

    Google Scholar 

  • Machodo AT, Magalhães JR (1995) Melhoramento de milho para uso eficiente de N sob condições de estresse. In: SIMPÓSIO INTERNACIONAL SOBRE ESTRESSE AMBIENTAL: O MILHO EM PERSPECTIVA, 1992, Belo Horizonte. Anaislysis Sete Lagoas, Embrapa-CNPMS, pp 321–342

    Google Scholar 

  • Machado AT, Magalhães JR, Magnavaca R, Silva MR (1992) Determinação da atividade de enzimas envolvidas no metabolismo do N em diferentes genótipos de milho. Revista Brasileira de Fisiologia Vegetal, Brasília, v. 4, n. 1, pp 45–47

    Google Scholar 

  • Man HM, Boriel R, El-Khatib R, Kirby EG (2005) Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol 167:31–41

    Article  PubMed  CAS  Google Scholar 

  • Martin A, Lee J, Kichey T, Gerentes D, et al (2006) Two cytosolic glutamine synthetase isoforms of maize (Zea mays L.) are specifically involved in the control of grain production. The Plant Cell 18:3252–3274

    Article  PubMed  CAS  Google Scholar 

  • Mokhele B, Zhan X, Yang G, Zhang X (2012) Review: nitrogen assimilation in crop plants and its affecting factors. Can J Plant Sci 92:399–405

    Article  CAS  Google Scholar 

  • Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agro J 74:562–564

    Article  Google Scholar 

  • Mollaretti G, Bosio M, Gentinetta E, Motto M (1987) Genotypic variability for N related traits in maize. Identification of inbread lines with high or low levels on NO3 N in the stalks. Maydica 32:309–323

    Google Scholar 

  • Nogueira EDM, Olivares FL, Japiassu JC, Vilar CV, Vinagre F, Baldini JI, Hemerly AS (2005) Characterisation of glutamine synthetase genes in sugarcane genotypes with different rates of biological nitrogen fixation. Plant Sci 169:819–832

    Article  Google Scholar 

  • Oaks A (1994) Primary nitrogen assimilation in higher plants and its regulation. Can J Bot 72:739–750

    Article  CAS  Google Scholar 

  • Okamoto M, Kumar A, Li W, Wang Y, Siddiqi MY, Crawford NM, Glass ADM (2006) High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiol 140:1036–1046

    Article  PubMed  CAS  Google Scholar 

  • Oliveria IC, Brears T, Knight TJ, Clark A, Coruzzi GM (2002) Overexpression of cytosolic glutamate synthethase in Arabidopsis thaliana. Plant Physiol 121:301–309

    Article  Google Scholar 

  • Omata T, Ohmori M, Arai N, Ogawa T (1989) Genetically engineered mutant of the cyanobacterium Synechococcus PCC 7942 defective in nitrate transport. Proc Nat Acad Sci USA 86:6612–6616

    Google Scholar 

  • Orsel M, Chopin F, Leleu O, Smith SJ, Krapp A, Daniel-Vedele F, Miller AJ (2006) Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. Plant Physiol 142:1304–1317

    Article  PubMed  CAS  Google Scholar 

  • Pahlich E (1996). Remarks concerning the dispute related to the function of plant glutamate dehydrogenase: commentary. Can J Bot 74:512–515

    Article  Google Scholar 

  • Provan F, Aksland LM, Meyer C, Lillo C (2000). Deletion of the Nitrate Reductase N-terminal domain still allows binding of 14-3-3 proteins but affects their inhibitory properties. Plant Physiol 123:757–764

    Article  PubMed  CAS  Google Scholar 

  • Quillere I, Dufosse C, Roux Y, Foyer CH, Caboche M, Morot-Gaudry JF (1994) The effects of deregulation of NR gene expression on growth and nitrogen metabolism of Nicotiana plumbaginifolia plants. J Exp Bot 45:1205–1211

    Article  CAS  Google Scholar 

  • Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363.

    Article  Google Scholar 

  • Remans T, Nacry P, Pervent M, Filleur S, Diatoff E, Mounier E, Tillard P, Forde BG, Gojon A (2006) The Arabidopsis NRT1.1 transporter participates in the signalling pathway triggering root colonization of nitrate rich patches. Proc Natl Acad Sci U S A 103:19206–19211

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara H, Kawabata S, Takahashi H, HaseT, Sugiyama T (1992) Molecular cloning of the family of glutamine synthetase genes from maize: expression of genes for glutamine synthetase and ferredoxin-dependent glutamate synthase in photosynthetic and non-photosynthetic tissues. Plant Cell Physiol 33:49–58

    CAS  Google Scholar 

  • Salon C, Munier-Jolain NG, Duc G, Voisin AS, Grangirard D, Larmure A, Emery RJN, Ney B (2001) Grain legume seed filling in relation to nitrogen acquisition: a review and prospects with particular reference to pea. Agronomie 21:539–552

    Article  Google Scholar 

  • Scarpeci TE, Marro ML, Bortolotti S, Boggio SB, Valle EM (2007) Plant nutritional status modulates glutamine synthetase levels in ripe tomatoes (Solanum lycopersicum cv. Micro-Tom). J Plant Physiol 164:137–145

    Article  PubMed  CAS  Google Scholar 

  • Sechley KA, Yamaya T, Oaks A (1992) Compartmentation of nitrogen assimilation in higher plants. Int Rev Cytol 134:85–163.

    Article  CAS  Google Scholar 

  • Seigel LM, Wilkerson JO (1989) In: Wray JL and Kinghorn JR (eds) Molecular and Genetic aspects of nitrate assimilation. Oxford Science Publications, Oxford, pp 263–283

    Google Scholar 

  • Shigeto J, Yoshihara S, Adam Suaad EH, Sueyoshi K, Sakamoto A, Morikawa H, Takahashi M (2006) Genetic engineering of nitrite reductase gene improves uptake and assimilation of nitrogen dioxide by Rhaphiolepis umbellate (Thunb.) Makino. Plant Biotech 23:111–116

    Article  CAS  Google Scholar 

  • Shrawat AK, Good AG (2008) Genetic engineering approaches to improving nitrogen use efficiency. ISB News Report, May 2008

    Google Scholar 

  • Skiba MW, George TS, Baggs EM, Daniell TJ (2011) Plant influence on nitrification. Biochem Soc Trans 39:275−278

    Google Scholar 

  • Smale M, McBride T (1996) Understanding global trends in the use of wheat diversity and international flows of wheat genetic resources. Part 1 of CIMMYT 1995/96 world wheat facts and trends: understanding global trends in the use of wheat diversity and international flows of wheat genetic resources. Mexico, D.F.: CIMMYT (Centro Internacional de Mejoramiento de Maiz y Trigo—International Center for the Improvement of Wheat and Maize)

    Google Scholar 

  • Sowers KE, Pan WL, Miller BC, Smith JL (1994) Nitrogen use efficiency of split nitrogen applications in soft white winter wheat. Agron J 86:942–948

    Article  Google Scholar 

  • Sun H, Huang QM, Su J (2005) Overexpression of glutamine synthetase confers transgenic rice herbicide resistance. High Technol Lett 11:75–79

    Google Scholar 

  • Suzuki A, Knaff DB (2005) Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism. Photosyn Res 83:191–217

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi M, Abiko T, Yamaya T (2007) Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot 58:2319–2327

    Article  PubMed  CAS  Google Scholar 

  • Thiellement H, Bharmann N, Damerval C (1999) Proteomics for genetic and physiological studies in plants. Electropho 20:2013–2026

    Article  CAS  Google Scholar 

  • Wang X, Bian Y, Cheng K, Zou H, Sun SS-M, He J-X (2012a) A comprehensive l differential proteomic study of nitrate deprivation in Arabidopsis reveals complex regulatory networks of plant nitrogen responses. J Proteome Res 11:2301−2315

    Google Scholar 

  • Wang YY, Hsu PK, Tsay F-Y (2012b) Uptake, allocation and signalling of nitrate. Trend Plant Sci 17:458–467

    Article  CAS  Google Scholar 

  • Wek RC, Staschke KA, Narasimhan J (2004) Regulation of the yeast general amino acid control pathway in response to nutrient stress. In: Winderickx JG (ed) Nutrient-induced responses in eukaryotic cells. Springer-Verlag, Berlin, pp 171–199

    Chapter  Google Scholar 

  • Wen-Yuan H, Shank D, Herwitt TI (1996) On-farm costs of reducing residual Nitrogen on cropland vulnerable to nitrate leaching. Rev Agri Eco 18:325–339

    Google Scholar 

  • Wray JL (1993) Molecular biology, genetics and regulation of nitrite reductase in higher plants. Plant Physiol 89:607–612

    Article  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Ann Rev Plant Biol 63:153–182

    Article  CAS  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006).Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  PubMed  CAS  Google Scholar 

  • Yamaya T, Obara M, Nakajima H, Sasaki S, Hayakawa T, Sato T (2002) Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot 53:917–925

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low nitrogen conditions. Proc Natl Aca Sci U S A 101:7833–7838

    Article  CAS  Google Scholar 

  • Zheng Z-L (2009) Carbon and nitrogen nutrient balance signalling in plants. Plant Signal Behav 4:584–591

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruby Chandna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chandna, R., Hakeem, K.R. (2013). From Agronomy to Molecular Genetics and Proteomics in an Effort to Improve Nitrogen Use Efficiency in Crops. In: Hakeem, K., Ahmad, P., Ozturk, M. (eds) Crop Improvement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7028-1_11

Download citation

Publish with us

Policies and ethics