Skip to main content

Biotic Stress and Crop Improvement: A Wheat Focus Around Novel Strategies

  • Chapter
  • First Online:
Crop Improvement

Abstract

Currently much of the wheat genetic variability is obtained through conventional crop improvement methods involving land races and normal varieties. Hence, the germplasm base available in the form of cultivars is becoming increasingly narrow and the need for widening the gene pool is essential in view of the emerging biotic and abiotic stresses due to global warming and climate change. Major abiotic constraints that have surfaced are due to increased salinity, water logging, drought and heat. Biotic stresses of emphasis here additionally contribute to the crops productivity situation. To counter these maladies a broad genetic base is essential to have on hand and its implementation a dire need forming the focus of this communication. New and useful genetic variations exist in the wild uncultivated wheat progenitor species that can be utilized for the enhancement of the existing wheat breeding pools and improve yield stability. These genetic variations can be harnessed through a combination of conventional breeding methods coupled with interspecific, intraspecific and intergeneric hybridization approaches popularly known as “wide crossing” that independently and cumulatively augment the available genetic variability for wheat improvement.

Diploid wheat progenitors (2n = 2x = 14) A, B, and D are the constituents of bread wheat (Triticum aestivum L) offering extensive diversity that contributes to crop improvement by providing novel allelic enrichment. A and D genome diploids belong to the “primary” gene pool and the B(S) genome to the “secondary” pool. Exploiting these diploids requires skills of developing user friendly genetic stocks commonly known as “synthetic hexaploids (SH)”. The stocks are produced by combining durum wheat cultivars (2n = 4x = 28) with each diploid thus generating hexaploids that are genomically AABBDD, AABBAA and AABBBB(SS). All stocks cytologically are expected to be 2n = 6x = 42 and major resources and provide unique allelic diversity for wheat improvement.

Biotic stresses of significance vary according to location and our major ones are the three rusts, karnal bunt with upcoming concern prevailing for powdery mildew, barley yellow dwarf and the new emergence of spot blotch. Progress to combat these stresses has be driven in tandem with locational priorities and these dictates have shifted global and national focus among the rusts to stem rust with the threat of race UG99’s spread linked with a local races presence. Thus diversity for exploitation has extended beyond the diploid relatives to include tertiary gene pool resources where most notable mention is of the diploid Thinopyrum bessarabicum that has the potential to address multiple stress factors and will be elucidated in an agglomerated manner to embrace various accessional sources as they relate to the major biotic stresses resistance management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal R, Gupta S, Banerjee S, Singh VB (2011) Development of a SCAR marker for detection of Bipolaris sorokiniana causing spot blotch of wheat. Can J Microbiol 57:934–942

    PubMed  CAS  Google Scholar 

  • Alonso LC, Kimber G (1984) Use of restitution nuclei to introduce alien genetic variation into hexaploid wheat. Z Pflanzenzücht 92:185–189

    Google Scholar 

  • Arif MA, Bux H, Gul-Kazi A, Rasheed A, Napar AA, Riaz A, Mujeeb-Kazi A (2012) Stripe rust analysis of D-genome synthetic wheats (2n = 6x = 42; AABBDD) and their molecular diversity. Arch Phytopathol PFL. doi:10.1080/03235408.2012.677492

    Google Scholar 

  • Bennett FGA (1984) Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathol 33:279–300

    Google Scholar 

  • Buloichik AA, Borzyak VS, Voluevich EA (2008) Influence of alien chromosomes on the resistance of soft wheat to biotrophic fungal pathogens. Cytol Genet 42:9–15

    Google Scholar 

  • Bux H, Ashraf M, Chen XM (2012a) Expression of high temperature adult plant (HTAP) resistance against stripe rust (Puccinia striiformis f.sp.tritici) in Pakistan wheat landraces. Can J Plant Pathol 34:68–74

    CAS  Google Scholar 

  • Bux H, Ashraf M, Rasheed A, Dipak SP, Kazi AG, Afzaal M (2012b). Molecular basis of disease resistance in cereal crops: an overview. In: Ashraf M, Öztürk M, Ahmad MSA, Aksoy A (eds) Crop production for agriculture improvement. Springer, pp 477–489. doi:10.1007/978–94-007–4116-4_18

    Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust on wheat (Puccinia striiformis f. sp. tritici) on wheat. Can J Plant Pathol 27:314–337

    Google Scholar 

  • Chen YH, Hunger RM, Carver BF, Zhang HL, Yan LL (2009) Genetic characterization of powdery mildew resistance in U.S. hard winter wheat. Mol Breeding 24:141–152

    Google Scholar 

  • Coghlan A (2006) Synthetic wheat offers hope to the world. New Scientist. On line report on 11 Feb 2006

    Google Scholar 

  • Cox TS, Hatchett JH, Gill BS, Raupp WJ, Sears RS (1990) Agronomic performance of hexaploid wheat lines derived from direct crosses between wheat and Aegilops squarrosa. Plant Breeding 105:271–277

    Google Scholar 

  • Cox TS, Harrell LC, Chen P, Gill BS (1991) Reproductive behavior of hexaploid/diploid wheat hybrids. Plant Breeding 107:105–118

    Google Scholar 

  • Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8:1793–1807

    PubMed  CAS  Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafsson JP (ed) Gene manipulation in plant improvement, 16th Stadler Genetics Symposium, Plenum Press, New York, pp 209–279

    Google Scholar 

  • Dubin HJ, Brennan JP (2009) Combating stem and leaf rust of wheat. IFPRI Discussion Paper 00910, November 2009, pp 1–53

    Google Scholar 

  • Farrar W (1904) Some notes on the wheat “Bobs”; its peculiarities, economic value, and origin. Agric Gaz NSW 15:849–854

    Google Scholar 

  • Feng DS, Ma X, Lin AL, Wang HG, Tian JC (2010) Isolation of resistance gene analogues to powdery mildew resistance sequences in hexaploid wheat. Biologia Plantarum 54(3):551–555

    CAS  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proceedings National Academy Sciences 100:15253–15258

    CAS  Google Scholar 

  • Flor H (1956) The complementary genic systems in fl ax and fl ax rust. Adv Genet 8:29–54

    Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Google Scholar 

  • Gennaro A, Koebner RMB, Ceoloni C (2009) A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat. Functional Integr Genomics 9:325–334

    CAS  Google Scholar 

  • Gill BS, Raupp WJ (1987) Direct gene transfers from Aegilops squarrosa L. to hexaploid wheat. Crop Sci 27:445–450

    Google Scholar 

  • Gill BS, Raupp WJ, Sharma HC (1986) Resistance in Aegilops squarrosa to wheat leaf of rust, wheat powdery mildew, greenbug, and Hessian fly. Plant Dis 70:553–556

    Google Scholar 

  • Griffey CA, Das MK, Stromberg EL (1993) Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Dis 77:618–622

    Google Scholar 

  • Gul-Kazi A, Rasheed A, Mahmood T, Mujeeb-Kazi A (2012) Molecular and morphological diversity with biotic stress resistances of high 1000-grain weight synthetic hexaploid wheats. Pak J Bot 44:1021–1028

    Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Inducible plant defense mechanisms and resistance gene function. Plant Cell 8:1773–1791

    PubMed  CAS  Google Scholar 

  • Helguera M, Khan IA, Dubcovsky J (2000) Development of PCR markers for wheat leaf rust resistance gene Lr47. Theor Appl Genet 101;625–631

    CAS  Google Scholar 

  • Helguera M, Khan IA, Kolmer J, Lijavetzky D, Zhong-qi L, Dubcovsky J (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847

    CAS  Google Scholar 

  • Helguera M, Vanzetti L, Soria M, Khan IA, Kolmer J, Dubcovsky J (2005) PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Sci 45:728–734

    CAS  Google Scholar 

  • Heun M, Fischbeck G (1987) Identification of wheat powdery mildew resistant genes by analyzing host-pathogen interactions. Plant Breeding 98:124–129

    Google Scholar 

  • Hodson DP (2011) Shifting boundaries: challenges for rust monitoring. Euphytica 179:93–104

    Google Scholar 

  • Hodson DP, Singh RP, Dixon JM (2005) An initial assessment of the potential impact of stem rust (race UG99) on wheat producing regions of Africa and Asia using GIS. Abstracts of the 7th International Wheat Conference, Mar Del Plata, p 142

    Google Scholar 

  • Hsam SLK, Zeller FJ (2002). Breeding for powdery mildew resistance in common wheat (T. aestivum L. em Thell.). In: Belanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise, APS Press, St. Paul, pp 219–238

    Google Scholar 

  • Hsam SLK, Lapochkina IF, Zeller FJ (2003) Chromosomal location of genes for powdery mildew resistance in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica 133:367–370

    Google Scholar 

  • Hua W, Liu Z, Zhu J, Xie C, Yang T, Zhou Y, Duan X, Sun Q, Liu Z (2009) Identification and genetic mapping of Pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 119: 223–230

    PubMed  CAS  Google Scholar 

  • Huang L, Brooks SA, Li WL, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploidy genome of bread wheat. Genetics 164:655–664

    PubMed  CAS  Google Scholar 

  • Islam AKMR, Shepherd KW, Sparrow DHB (1978) Production and characterization of wheat-barley addition lines. Proceedings of 5th International Wheat Genetics Symposium, New Delhi, pp 365–371

    Google Scholar 

  • Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46:161–174

    Google Scholar 

  • Jia JZ (1996) RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565

    CAS  Google Scholar 

  • Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Google Scholar 

  • Joshi AK, Azab M, Mossad M, Moselhy M, Osmanzai M, Gelalcha S, Bedada G, Bhatta MR, Hakiom A, Malakar PK, Haque ME, Tiwari TP, Majid A, Kamal MRJ, Bishaw Z, Singh RP, Payne T, Braun HJ (2011) Delivering rust resistant wheat to farmers: a step towards increased food security. Euphytica 179:187–196

    Google Scholar 

  • Kazi AG (2011) Utilization of Triticeae gene pool diversity for wheat improvement. PhD dissertation, Quaid-i-Azam University, Islamabad, pp 1–240

    Google Scholar 

  • Kema GHJ (1992) Resistance in spelt wheat to yellow rust I. Formal analysis and variation for gliadin patterns. Euphytica 63:207–217

    Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheat. An introduction. Special Report 353, College of Agriculture, University of Missouri, Columbia, USA

    Google Scholar 

  • Kruse A (1967) Intergeneric hybrids between Hordeum vulgare L. ssp. Distichum (v. Pallas, 2 = 14) and Secale cereale L. (v. Petkus, 2n = 14). Royal Veterinary Agricultural College Yearbook 1967. Copenhagen, pp 82–92

    Google Scholar 

  • Kruse A (1969) Intergeneric hybrids between Triticum aestivum L. (v. Koga II. 2 = 42) and Avena sativa L. (v. Stal., 2n = 42) with pseudogamous seed formation. Royal Veterinary Agricultural College Yearbook 1969. Copenhagen, pp 188–200

    Google Scholar 

  • Kruse A (1973) Hordeum x Triticum hybrids. Hereditas 73:157–161

    Google Scholar 

  • Kruse A (1974) Hordeum vulgare ssp. distichum (var Bomi) x Triticum aestivum (var. Koga). An F1 hybrid with generative seed formation. Hereditas 78:319

    Google Scholar 

  • Kuraparthy V, Chunneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007) Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389

    PubMed  CAS  Google Scholar 

  • Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/ Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898

    PubMed  CAS  Google Scholar 

  • Lillemo M, Skinnes H, Brown JKM (2010) Race specific resistance to powdery mildew in Scandinavian wheat cultivars, breeding lines and introduced genotypes with partial resistance. Plant Breeding 129:297–303

    CAS  Google Scholar 

  • Liu Z, Sun Q, Yang T (1999) Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breeding 118:215–219

    CAS  Google Scholar 

  • Liu Z, Sun Q, Ni Z, Nevo E, Yang T (2002) Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123:21–29

    CAS  Google Scholar 

  • Liu C, Yang ZJ, Li GR, Zeng ZX, Zhang Y, Zhou JP, Liu ZH, Ren ZL (2008) Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background. Euphytica 159:249–258

    CAS  Google Scholar 

  • Liu Y, He Z, Appels R, Xia X (2012) Functional markers in wheat: current status and future prospects. Theor Appl Genet 125:1–10

    PubMed  CAS  Google Scholar 

  • Mago R, Bariana HS, Dundas IS, Speilmeyer W, Lawrence GJ, Pryor AJ (2005) Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor Appl Genet 111:496–504

    PubMed  CAS  Google Scholar 

  • Mains EB (1933). Host specialization of Erysiphe graminis tritici. Proc Natl Acad Sci 19:49–53

    PubMed  CAS  Google Scholar 

  • Marais GF, McCallum B, Snyman JE, Pretorius ZA, Marais AS (2005) Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breeding 124:538–541

    CAS  Google Scholar 

  • Marais F, McCallum B, Marais A (2006) Leaf rust and stripe rust resistance genes derived from Triticum sharonense. Euphytica 149:373–380

    Google Scholar 

  • Marais F, Marais A, McCallum B, Pretorius Z (2009) Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Sci 49:871–879

    CAS  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    PubMed  CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (2003) Catalogue of gene symbols for wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proceedings of the 10th International Wheat Genetics Symposium, Vol. 4, associated CD-Rom, pp 1–34,

    Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris F, Somers DJ, Appels R, Devos KM (2010) Catalog of gene symbols for wheat. MacGene. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp. Accessed 25 Mar 2013

  • Meyers BC, Chin DB, Shen KA, Sivaramakrishnan S, Lavelle DO, Zhang Z, Mitchelmore RW (1998) The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell 10:1817–1832

    PubMed  CAS  Google Scholar 

  • Meyers BC, Kaushik S, Nandety RS (2005) Evolving disease resistance genes. Curr Opin Plant Biol 8:129–134

    PubMed  CAS  Google Scholar 

  • Miedner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566

    Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Leath S (2006) Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet 113:1497–1504

    PubMed  CAS  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S (2007) Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet 114:1451–1456

    PubMed  CAS  Google Scholar 

  • Mirza JI, Ahmed I, Khanzada KA, Ahmed N, Rattu A, Fayyaz M, Ahmad Y, Harkro AA, Mujeeb-Kazi A (2010) Local stem rust virulence in Pakistan and future breeding strategy. Pak J Bot 43(3):1999–2009

    Google Scholar 

  • Mohler V, Bauer A, Bauer C, Flath K, Schweizer G, Hartl L (2011) Genetic analysis of powdery mildew resistance in German winter wheat cultivar Cortez. Plant Breeding 130:35–40

    CAS  Google Scholar 

  • Morel J, Dangl JL (1997) The hypersensitive response and the induction of cell death in plants. Cell Death Differ 4:671–683

    PubMed  CAS  Google Scholar 

  • Mujeeb-Kazi A (2003) Wheat improvement facilitated by novel genetic diversity and in vitro technology. Plant Cell, Tissue and Organ Culture. 13:179–210

    Google Scholar 

  • Mujeeb-Kazi A (2005) Wide crosses for durum wheat improvement. In: Roya C, Nachit MN, Difonzo N, Araus JL, Pfeiffer WH, Slafer GA (eds) Durum wheat breeding: Current approaches and future strategies. The Haworth Press Inc., pp. 703–743

    Google Scholar 

  • Mujeeb-Kazi A (2006) Utilization of genetic resources for bread wheat improvement. In: Singh RJ, Jauhar PP (eds) CRC Series, pp 61–97

    Google Scholar 

  • Mujeeb-Kazi A, Asiedu R (1990) Wide hybridization—potential of alien genetic transfers for Triticum aestivum improvement. In: Bajaj YPS (ed) Biotech in agriculture and forestry, Vol 13, Wheat, pp 111–127

    Google Scholar 

  • Mujeeb-Kazi A, Hettel GP (1995) Utilizing wild grass biodiversity in wheat improvement:15 years of wide cross research at CIMMYT. CIMMYT Report 2, pp 1–140

    Google Scholar 

  • Mujeeb-Kazi A, Kimber G (1985) The production, cytology and practicality of wide hybrids in the Triticeae. Cereal Res Commun 13:111–124

    Google Scholar 

  • Mujeeb-Kazi A, Roldan S, Suh DY, Sitch LA, Farooq S (1987) Production and cytogenetic analysis of hybrids between Triticum aestivum and some caespitose Agropyron species. Genome 29:537–553

    Google Scholar 

  • Mujeeb-Kazi A, Roldan S, Suh DY, Ter-Kuile N, Farooq S (1989) Production and cytogenetics of Triticum aestivum L. hybrids with some rhizomatous Agropyron species. Theor Appl Genet 77:162–168

    Google Scholar 

  • Mujeeb-Kazi A, Rosas V, Roldán S (1996a) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s. lat. X T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evol 43:129–134

    Google Scholar 

  • Mujeeb-Kazi A, Villareal RL, Gilchrist LI, Rajaram S (1996b) Registration of five wheat germplasm lines resistant to Helminthosporium leaf blight. Crop Sci 36:216–217

    Google Scholar 

  • Mujeeb-Kazi A, Gilchrist LI, Villareal RL, Delgado R (2000) Registration of ten wheat germplasm lines resistant to Septoria tritici leaf blotch. Crop Sci 40:590–591

    Google Scholar 

  • Mujeeb-Kazi A, Cano S, Rosas V, Cortes A, Delgado R (2001a) Registration of five synthetic hexaploid wheat and seven bread wheat germplasm lines resistant to wheat spot blotch. Crop Sci 41:1653–1654

    Google Scholar 

  • Mujeeb-Kazi A, Fuentes-Davila G, Villareal RL, Cortes A, Rosas V, Delgado R (2001b) Registration of 10 synthetic hexaploid wheat and six bread wheat germplasms resistant to karnal bunt. Crop Sci 41:1652–1653

    Google Scholar 

  • Mujeeb-Kazi A, Delgado R, Cortes A, Cano S, Rosas V, Sanchez J (2004) Progress in exploiting Aegilops tauschii for wheat improvement. Annual Wheat Newsletter 50:79–88

    Google Scholar 

  • Mujeeb-Kazi A., Fuentes-Davilla G, Gul A, Mirza JI (2006a) Karnal bunt resistance in synthetic hexaploid wheats (SH) derived from durum wheat x Aegilops tauschii combinations and in some SH x bread wheat derivatives. Cereal Res Commun 34:1199–1205

    Google Scholar 

  • Mujeeb-Kazi A, Gul A, Ahmad I, Mirza JI (2006b) A simplified and effective protocol for production of bread wheat haploids (n = 3x = 21, ABD) with some application areas in wheat improvement. Pak J Bot 38:393–406

    Google Scholar 

  • Mujeeb-Kazi A, Gul A, Ahmad I, Farooq M, Rauf Y, Rahman A, Riaz H (2008a) Genetic resources for some wheat abiotic stress tolerances. In: Ashraf M, Ozturk M, Athar HR (eds) Salinity and water stress: improving crop efficiency, Springer, pp 149–163

    Google Scholar 

  • Mujeeb-Kazi A, Gul A, Farooq M, Rizwan S, Ahmad I (2008b) Rebirth of synthetic hexaploids with global implications for wheat improvement. Aust J Agric Res 59:391–398

    Google Scholar 

  • Mujeeb-Kazi A, Kazi AG, Dundas I, Rasheed A, Chen P, Kishi M, Bonnett D, Wang RRC, Bux H, Farrakh S (2013) Genetic diversity for wheat improvement as a conduit for food security. In: Donald Sparks (eds) Advances in Agronomy (in press)

    Google Scholar 

  • Murphy JP, Leath S, Huynh D, Navarro RA, Shi A (1998) Registration of NC96BGTD1, NC96BGTD2, and NC96BGTD3 wheat germplasm resistant to powdery mildew. Crop Sci 38:570

    Google Scholar 

  • Ogbonnaya FC, Abdalla O, Mujeeb-Kazi A, Kazi AG, Xu SS, Gosman N, Lagudah ES, Bonnett D, Sorrells ME (2013) Synthetic hexaploid in wheat improvement. In: Janick J (ed) Plant Breeding Reviews (in press)

    Google Scholar 

  • Olivera PD, Kolmer JA, Anikster Y, Steffenson BJ (2007) Resistance of Sharon goatgrass (Aegilops sharonensis) to fungal diseases of wheat. Plant Dis 91:942–950

    Google Scholar 

  • Peusha H, Enno T, Jakobson I, Tso˜mbalova J, Ingver A, Järve K (2008) Powdery mildew resistance of Nordic spring wheat cultivars grown in Estonia. Acta Agric Scand Sect B-Soil Plant Sci 58:289–296

    CAS  Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistanceJ gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Phytopathology 84–203

    Google Scholar 

  • Pretorius ZA, Jin Y, Bender CM, Herselman L, Prins R (2012) Seedling resistance to stem rust race UG99 and marker analysis for Sr2, Sr24 and Sr31 in South African wheat cultivars and lines. Euphytica 186:15–23

    CAS  Google Scholar 

  • Qi LL, Pumphery MO, Friebe B, Zhang P, Qian C, Bowden RL, Rouse MN, Jin Y, Gill BS (2011) A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race UG99 from Dasypyrum villosum into bread wheat. Theor Appl Genet 123:159–167

    PubMed  CAS  Google Scholar 

  • Qiu YC, Sun XL, Zhou RH, Kong XY, Zhang SS, Jia JZ (2006) Identification of microsatellite markers linked to powdery mildew resistance gene Pm2 in wheat. Cereal Res Commun 34:1267–1273

    CAS  Google Scholar 

  • Rafiq K, Rasheed A, Gul-Kazi A, Bux H, Naz F, Mahmood T, Mujeeb-Kazi A (2012) Powdery mildew resistance in some new wheat amphiploids (2n = 6x = 42) derived from A- and S-genome diploid progenitors. Plant Genet Resour. doi:10.1017/S1479262112000202

    Google Scholar 

  • Randhawa HS, Mutti JS, Kidwell K, Morris CF, Chen XM (2009) Rapid and targeted introgression of genes into popular wheat cultivars using marker assisted background selection. PLoS ONE 4(6):1–11 (e5752)

    Google Scholar 

  • Ren Q, Liu H, Zhang Z, Feng J, Xu S, Zong-jun PU, Zhi-yong XIN (2012) Characterization and molecular mapping of a stripe rust resistance gene in synthetic wheat CI110. J Integr Agric 11:521–527

    CAS  Google Scholar 

  • Reynolds MP, Borlaug NE (2006) Applying innovations and new technologies from international collaborative wheat improvement. J Agr Sci 144:95–110

    Google Scholar 

  • Riera-Lizarazu O, Mujeeb-Kazi A (1990) Maize (Zea mays L.) mediated wheat (Triticum aestivum L.) polyhaploid production using various crossing methods. Cereal Res Commun 18:339–345

    Google Scholar 

  • Riley R, Chapman V, Johnson R (1968) Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217:383–384

    Google Scholar 

  • Rimpau W (1891) Kreuzungsprodukte landwirtschaftlicher Kulturpflanzen. Landwirtschaftl Jahrb 20:335–371

    Google Scholar 

  • Rizwan S, Ahmad I, Ashraf M, Sahi GM, Mirza JI, Rattu AR, Mujeeb-Kazi A (2007) New sources of wheat yellow rust (Puccinia striformis f. tritici) seedling resistance. Pak J Bot 39:1207–1216

    Google Scholar 

  • Rizwan S, Ahmad I, Ashraf M, Mirza JI, Sahi GM, Rattu AR, Mujeeb-Kazi A (2008) Evaluation of synthetic hexaploid wheats and their durum parents for stripe rust resistance. Rev Mex Fitopatol 25:152–160

    Google Scholar 

  • Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal M (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  CAS  Google Scholar 

  • Rong JK, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–126

    CAS  Google Scholar 

  • Rouse MN, Jin Y (2011) Stem rust resistance in A-genome diploid relatives of wheat. Plant Dis 10:1094 (PDIS,-04–10–0260)

    Google Scholar 

  • Rouse MN, Olson EL, Gill BS, Pumphery MO, Jin Y (2011) Stem rust resistance in Aegilops tauschii germplasm. Crop Sci 51:2074–2078

    Google Scholar 

  • Shaner G (1973). Evaluation of slow-mildewing resistance of Knox wheat in the field. Phytopathology 63:867–872

    Google Scholar 

  • Sharma HC (1995) How wide can a wide cross be?. Euphytica 82:43–64

    Google Scholar 

  • Sharma HC, Gill BS (1983) Current status of wide hybridization in wheat. Euphytica 32:17–31

    Google Scholar 

  • Shi AN, Leath S, Murphy JP (1998) A major gene for powdery mildew resistance transferred to common wheat from wild eikorn wheat. Phytopathology 88:144–147

    PubMed  CAS  Google Scholar 

  • Simonite T (2006) Ancient genetic tricks shape up wheat; turning back the evolutionary clock offers better crops for dry regions. Nature. On line reporting on Jan. 03, 2006

    Google Scholar 

  • Singh RP, Nelson JC, Sorrells ME (1998) Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci 40:1148–1155

    Google Scholar 

  • Singh RP, William HM, Huerta-Espino J, Rosewarne G (2004) Wheat rust in Asia: meeting the challenges with old and new technologies. New dimensions for a diverse planet, Proceedings of the 4th International Crop Science Congress, 26 Sep–1 Oct 2004, Brisbane

    Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Huerta-Espino J, Kinyua MG, Wanyera R, Njau P, Ward RW (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB reviews: perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources No. 054. pp 1–13

    Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrara-Foessel S, Ward R (2008) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309

    CAS  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrara-Foessel S, Singh PK, Singh S, Govindan V (2011a) The emergence of UG99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481

    CAS  Google Scholar 

  • Singh RP, Huerta-Espino J, Bhavani S, Herrara-Foessel S, Jin Y, Njau P, Singh PK, Velu G, Singh S, Pena RJ, Crossa J (2011b) High yielding CIMMYT spring wheats with resistance to UG99 and other rusts developed through targeted breeding. BGRI Technical Workshop, 13–16 June, St. Paul, pp 98–104

    Google Scholar 

  • Starling TM, Roane CW, Camper HM (1984). Registration of Massey wheat. Crop Sci 24:1000 (Tenth International Wheat Genetics Symposium, Paestum. pp 772–774)

    Google Scholar 

  • Sukhwinder-Singh, Hernandez MV, Crossa J, Singh PK, Bains NS (2012) Multi-trait and multi-environment QTL analyses for resistance to wheat diseases. PLoS ONE 7(6):e38008

    Google Scholar 

  • Talbert LE, Blake NK, Chee PW, Blake TK, Magyar GM (1994) Evaluation of ‘sequence-tagged-site’ PCR products as molecular markers in wheat. Theor Appl Genet 87:789–794

    CAS  Google Scholar 

  • Tommasini L, Yahiaoui N, Srichumpa P, Keller B (2006) Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. Theor Appl Genet 114:165–175

    PubMed  CAS  Google Scholar 

  • Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Science 48:1255–1265

    Google Scholar 

  • Trethowan RM, Van-Ginkel M (2009) Synthetic wheat—an emerging genetic resource. In: Carver B (ed) Wheat science and trade. Chapter 16. Wiley-Blackwell, Iowa, pp 369–386

    Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    PubMed  CAS  Google Scholar 

  • Valkoun J (2001) Wheat pre-breeding using wild progenitors. Euphytica 119:17–23

    Google Scholar 

  • Villareal RL, Mujeeb-Kazi A, Fuentes-Davila G, Rajaram S (1996) Registration of four synthetic hexaploid wheat germplasm lines derived from Triticum turgidum x T. tauschii crosses and resistant to karnal bunt. Crop Sci 36:218–220

    Google Scholar 

  • Wang RR-C (1989) Intergeneric hybrids involving perennial Triticeae. Genet (Life Sci. Advances) 8:57–64

    Google Scholar 

  • Wu L, Xia XC, Zhu HZ, Li SZ, Zheng YL, He ZH (2010) Molecular characterization of Lr34/Yr18/Pm38 in 273 CIMMYT wheat cultivars and lines using functional markers. Sci Agric Sin 43:4553–4561

    CAS  Google Scholar 

  • Xu SS, Jin Y, Klindworth DL, Wang RR-C, Cai X (2009) Evaluation and characterization of seedling resistances to stem rust UG99 races in wheat-alien species derivatives. Crop Sci 49:2167–2175

    Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    PubMed  CAS  Google Scholar 

  • Yang W, Liu D, Li J, Zhang L, Wei H, Hu X, Zheng Y, He Z, Zou Y (2009) Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics 36:539–546

    PubMed  CAS  Google Scholar 

  • Zaharieva M, Suenaga K, William HM, Mujeeb-Kazi A (2003) Genetic diversity of synthetic hexaploids with enhanced levels of resistance to Fusarium head scab. Annual Wheat Newsletter 49:73–75

    Google Scholar 

  • Zeller FJ (1973) 1B/1R wheat-rye chromosome substitutions and translocations. In: Sears ER, Sears LMS (eds) Proceedings of the 4th International Wheat Genetics Symposium, Columbia, pp 209–221

    Google Scholar 

  • Zeller FJ, Kong L, Hartl L, Mohler V, Hsam SLK (2002) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.). 7. Gene Pm29 in line Pova. Euphytica 123:187–194

    CAS  Google Scholar 

  • Zhang JY, Li XM, Wang RR-C, Cortes A, Rosas V, Mujeeb-Kazi A (2002) GISH, AFLP, and RAPD characterization of Eb-genome chromosomes in five Thinopyrum bessarabicum disomic addition lines of bread wheat. Int J Plant Sci 163:167–174

    CAS  Google Scholar 

  • Zhou T, Wang Y, Chen J, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non- TIR NBS—LRR genes. Mol Gen Genet 271:402–415

    CAS  Google Scholar 

  • Zhu Z, Zhou R, Kong X, Dong Y, Jia J (2006) Microsatellite marker identification of a Triticum aestivum-Aegilops umbellulata substitution line with powdery mildew resistance. Euphytica 150:149–153

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvina Gul Kazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kazi, A., Rasheed, A., Mujeeb-Kazi, A. (2013). Biotic Stress and Crop Improvement: A Wheat Focus Around Novel Strategies. In: Hakeem, K., Ahmad, P., Ozturk, M. (eds) Crop Improvement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7028-1_7

Download citation

Publish with us

Policies and ethics