Skip to main content

Variability in Fusarium species Causing Wilt Disease in Crops: A Transcriptomic Approach to Characterize Dialogue Between Host and Pathogen

  • Chapter
  • First Online:
Crop Improvement

Abstract

Crops are indispensible for the existence of humans and animals and the commercial importance comes under threat when they are attacked and infected by the pathogens. The crops are constantly under threat and are exposed to various pathogens. Some pathogens are host specific and thus can infect the healthy plant and some of them are opportunists, which gain entry from the wounding site. The most important and devastating among the pathogens are the fungal pathogens and important amongst these is Fusarium sp. This genus contains many species attacking diversity of agricultural crops. These are pathogenic to plants and also produce toxins, which affect the animals and humans consuming the plants. This review focuses on the pathogenesis of Fusarium sp. causing crop diseases and understanding the host–pathogen interactions including plant defense responses. This article perceives the potential of transcriptomics in association between two-species. The identified association between species (crops and microbes (Fusarium sp.) can reveal processes which can be exploited beneficially for applications in biotechnology. Specifically, we address the question how the new knowledge gained from transcriptomic approaches and analyses of interactions between plants and disease causing microbes (Fusarium) can be exploited in ways that will ultimately lead to crop improvement by development of crop cultivars that are productive under multiple environmental pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S, Gordon-Weeks R, Pickett J, Ton J (2010) Natural variation in priming of basal resistance: from evolutionary origin to agricultural exploitation. Mol Plant Pathol 11:817–827

    Google Scholar 

  • Akhond M, Machray GC (2009) Biotech crops: technologies, achievements and prospects. Euphytica 166:47–59

    Article  CAS  Google Scholar 

  • Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184:529–544

    Article  PubMed  CAS  Google Scholar 

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  PubMed  CAS  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63(10):3523–3543

    Article  PubMed  CAS  Google Scholar 

  • Baayen RP, O’Donnell K, Bonants PJM, Cigelnik E, Kroon LPNM, Roebroeck EJA, Waalwijk C (2000) Gene genealogies and AFLP analysis in the Fusarium oxysporum complex identify monophyletic and non-monophyletic formae speciales causing wilt and rot diseases. Phytopathology 90:891–900

    Article  PubMed  CAS  Google Scholar 

  • Bacon CW, Hinton DM (1996) Symptomless endophytic colonization of maize by Fusarium moniliforme. Can J Bot 74:1195–1202

    Article  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488

    Google Scholar 

  • Beatty PH, Good AG (2011) Future prospects for cereals that fix nitrogen. Science 333:416–417

    Article  PubMed  CAS  Google Scholar 

  • Bechtold U et al (2005) The influence of the light environment and photosynthesis on oxidative signaling responses in plant–biotrophic pathogen interactions. Plant Cell Environ 28:1046–1055

    Article  CAS  Google Scholar 

  • Beckman CH (1987) The nature of wilt diseases of plants. APS Press, American Phytopathological Society, St. Paul

    Google Scholar 

  • Berek L, Petri IB, Mesterhazy AA, Teren J, Molnar J (2001) Effects of mycotoxins on human immune functions in vitro. Toxicol In Vitro 15:25–30

    Article  PubMed  CAS  Google Scholar 

  • Bhattarai KK, Xie QG, Pourshalimi D, Younglove T, Kaloshian I (2007) Coi1-dependent signaling pathway is not required for Mi-1-mediated potato aphid resistance. Mol Plant Microbe Interact 20:276–282

    Google Scholar 

  • Bhattarai KK, Hagop SA, Kaloshian I, Eulgem T (2010) WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1. Plant J 63:229–240

    Google Scholar 

  • Boutati EI, Anaissie EJ (1997) Fusarium, a significant emerging pathogen in patients with hematologic malignancy: ten years’ experience at a cancer center and implications for management. Blood 90:999–1008

    PubMed  CAS  Google Scholar 

  • Campbell R, Greaves MP (1990) Anatomy and community structure of the rhizosphere. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 11–34

    Google Scholar 

  • Chandra NS, Udaya Shankar AC, Niranjana SR, Reddy MS, Prakash HS, Mortensen CN (2008) Control of Fusarium verticilliodes causing ear rot of maize by Pseudomonas fluorescens. Pest Manag Sci 65:769–775

    Article  CAS  Google Scholar 

  • Chandra SN, Shankar ACU, Niranjana SR, Wulff EG, Mortensen CN, Prakash HS (2010) Detection and quantification of fumonisins from Fusarium verticillioides in maize grown in southern India. World J Microbiol Biotechnol 26:71–78

    Google Scholar 

  • Chang DC, Grant GB, O’Donnell K, Wannemuehler KA, Noble-Wang J, Rao CY et al (2006) Multistate outbreak of Fusarium keratitis associated with use of a contact lens solution. JAMA 296:953–963

    Article  PubMed  CAS  Google Scholar 

  • Charpentier M, Oldroyd G (2010) How close are we to nitrogen fixing cereals? Curr Opin Plant Biol 13:556–564

    Article  PubMed  CAS  Google Scholar 

  • Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci 160:1115–1123

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira Dal’Molin CG et al (2010a) C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol 154:1871–1885

    Article  CAS  Google Scholar 

  • de Oliveira Dal’Molin CG et al (2010b) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152:579–589

    Article  CAS  Google Scholar 

  • Depuyd S, Hardtke CS (2011) Hormone signaling crosstalk in plant growth regulation. Curr Biol 21:365–373

    Article  CAS  Google Scholar 

  • Desjardins AE, Hohn TM, McCormick SP (1993) Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Mol Biol Rev 57:595–604

    CAS  Google Scholar 

  • Desjardines AE, Proctor RH (2007) Molecular biology of Fusarium mycotoxins. Int J Food Microbiol 119:47–50

    Google Scholar 

  • Di Pietro A, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MIG (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Path 4:315–325

    Article  CAS  Google Scholar 

  • Diener AC, Ausubel FM (2005) Resistance to Fusarium oxysporum 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171:305–321

    Article  PubMed  CAS  Google Scholar 

  • Dilip R, Panthee DR, Chen F (2010) Genomics of fungal disease resistance in tomato. Curr Genomics 11:30–39

    Article  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach (Prunus persica (L.) Batsch) and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    Article  PubMed  CAS  Google Scholar 

  • Doohan FM, Parry DW, Jenkinson P, Nicholson P (1998) The use of species-specific PCR-based assays to analyse Fusarium ear blight of wheat. Plant Pathol 47:197–205

    Google Scholar 

  • Dubin HJ, Gilchrist L, Reeves L, McNab A (1997) Fusarium head blight: global status and prospects. CIMMYT, Mexico City

    Google Scholar 

  • Durrant WE, Rowland O, Piedras P, Hammond-Kosack KE, Jones JDG (2000) cDNA AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12:963–977

    PubMed  CAS  Google Scholar 

  • Eaton CJ et al (2011) What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci 180:190–195

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 16:551–558

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  PubMed  CAS  Google Scholar 

  • Eujayl I, Sorrells ME, Wolters P, Baum M, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407

    Article  PubMed  CAS  Google Scholar 

  • Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MA (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422

    Article  PubMed  CAS  Google Scholar 

  • Fourie G, Steenkamp ET, Ploetz RC, Gordon TR, Viljoen A (2011) Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infec Genet Evol 11:533–542

    Article  CAS  Google Scholar 

  • Fracchia S, Garcia-Romera I, Godeas A, Ocampo JA (2000) Effect of the saprophytic fungus Fusarium oxysporum on arbuscular mycorrhizal colonization and growth of plants in greenhouse and field trials. Plant Soil 223:175–184

    Article  CAS  Google Scholar 

  • Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157:493–502

    Article  Google Scholar 

  • Fusarium Comparative Database. http://www.broad.mit.edu/annotation/genome/fusarium_group/MultiHome.html

  • Gaffoor I, Trail F (2006) Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. App Environ Microbiol 72(3):1793–1799

    Google Scholar 

  • Gaffoor I, Brown DW, Plattner RD, Proctor RH, Qi W, Trail F (2005) Functional analysis of the polyketide synthase genes in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). Eukaryotic Cell 4(11):1926–1933

    Google Scholar 

  • Gaitán-Solís E, Duque MC, Edwards KJ, Tohme J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris): isolation, characterization, and cross-species amplification in Phaseolus ssp. Crop Sci 42:2128–2136

    Article  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci U S A 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Gale LR, Katan T, Kistler HC (2003) The probable center of origin of Fusarium oxysporum f. sp. lycopersici VCG 0033. Plant Dis 87:1433–1438

    Article  Google Scholar 

  • Gao LL, Anderson JP, Klingler JP, Nair RM, Edwards OR et al (2007) Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula. Mol Plant Microbe Interact 20:82–93

    Google Scholar 

  • Garvey GS, McCormick SP, Rayment I (2008) Structural and functional characterization of the TRI101 trichothecene 3-O-acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum. J Biol Chem 283:1660–1669

    Article  PubMed  CAS  Google Scholar 

  • Genomics and Gene Discovery bEST Resource. http://wheat.pw.usda.gov/bEST/

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Google Scholar 

  • Gohre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Ibeas D, Cañizares J, Aranda MA (2012a) Microarray analysis shows that recessive resistance to Watermelon mosaic virus in melon is associated with the induction of defense response genes. Mol Plant Microbe Interact 25(1):107–118

    Article  CAS  Google Scholar 

  • Gonzalez-Ibeas D, Blanca J, Cañizares J, Truniger V, Aranda MA (2012b) A cost-effective double-stranded cDNA synthesis for plant microarrays. Plant Mol Biol Rep 30(5):1276–1282

    Article  CAS  Google Scholar 

  • Guo J, Jiang RHY, Kamphuis LG, Govers F (2006) A cDNA-AFLP based strategy to identify transcripts associated with avirulence in Phytophthora infestans. Fungal Genet Biol 43(2):111–123

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Gupta S, Chakraborti D, Rangi RK, Basu D, Das S (2009) A molecular insight into the early events of Chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (Race 1) interaction through cDNA-AFLP analysis. Phytopathology 99:1245–1257

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Chakraborti D, Sengupta A, Basu D, Das S (2010) Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. ciceri Race 1. PLoS ONE 5(2):e9030

    Article  PubMed  CAS  Google Scholar 

  • Gust AA et al (2010) Biotechnological concepts for improving plant innate immunity. Curr Opin Biotechnol 21:204–210

    Article  PubMed  CAS  Google Scholar 

  • Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25

    Article  CAS  Google Scholar 

  • Han Z, Wang C, Song X, Guo W, Gou J, Li C, Chen X, Zhang T (2006) Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet 112:430–439

    Article  PubMed  CAS  Google Scholar 

  • Harris LJ, Alexander NJ, Saparno A, Blackwell B, McCormick SP, Desjardins AE, Robert LS, Tinker N, Hattori J, Piche C, Schernthaner J, Watson R, Ouellet T (2007) A novel gene cluster in Fusarium graminearum contains a gene that contributes to butenolide biosynthesis. Fungal Genet Biol 44:293–306

    Google Scholar 

  • Hey SJ et al (2010) The interface between metabolic and stress signaling. Ann Bot Rev 105:197–203

    Article  CAS  Google Scholar 

  • Howard PC, Eppley RM, Stack ME, Warbritton A, Voss KA, Lorentzen RJ, Kovach RM, Bucci TJ (2001) Fumonisin B1 carcinogenicity in a two-year feeding study using F344 rats and B6C3F1 mice. Environ Health Perspect 109(S2):277–282

    Article  PubMed  CAS  Google Scholar 

  • Howe GA, Jander G (2008) Plant Immunity to Insect Herbivores. Ann Rev Plant Biol 59:41–66

    Google Scholar 

  • Idnurm A, Howlett BJ (2001) Pathogenicity genes of phytopathogenic fungi. Mol Plant Pathol 2:241–255

    Article  PubMed  CAS  Google Scholar 

  • Inoue I, Namiki F, Tsuge T (2002) Plant colonization by vascular wilt fungus Fusarium oxysporum requires FOW1, a gene encoding a mitochondrial protein. Plant Cell 14:1869–1883

    Article  PubMed  CAS  Google Scholar 

  • Jonkers W, Estrada AER, Lee K, Breakspear A, May G, Kistler HC (2012) Metabolome and transcriptome of the interaction between Ustilago maydis and Fusarium verticillioides in vitro. Appl Environ Microbiol 78(10):3656–3667

    Article  PubMed  CAS  Google Scholar 

  • Kakirde KS et al (2010) Size does matter: application-driven approaches for soil metagenomics. Soil Biol Biochem 42:1911–1923

    Article  PubMed  CAS  Google Scholar 

  • Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol 143:849–865

    Google Scholar 

  • Kim YT, Lee YR, Jin J, Han KH, Kim H, Kim JC, Lee T, Yun SH, Lee YW (2005) Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol Microbiol 58:1102–1113

    Google Scholar 

  • Knowledge-based Oryza Molecular Biological Encyclopedia. http://cdna01.dna.affrc.go.jp/cDNA/

  • Kriek NPJ, Kellerman TS, Marasas WFO (1981) A comparative study of the toxicity of Fusarium verticillioides (= F. moniliforme) to horses, primates, pigs, sheep and rats. Ondersterpoort J Vet Res 48:129–131

    CAS  Google Scholar 

  • Kunz BA et al (2008) UV-induced DNA damage promotes resistance to the biotrophic pathogen Hyaloperonospora parasitica in Arabidopsis. Plant Physiol 148:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Kusnierczyk A, Winge P, Jorstad TS, Troczynska J, Rossiter JT et al (2008) Towards global understanding of plant defence against aphids—timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant Cell Environ 31:1097–1115

    Google Scholar 

  • Larsen PE et al (2011) Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome. BMC Syst Biol 5:70

    Article  PubMed  Google Scholar 

  • Lee B, Lee S, Ryu C-M (2012) Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper. Ann Bot 110(2):281–290

    Article  PubMed  CAS  Google Scholar 

  • Leilani AR, James BH, Gary AP (2006) Marker assisted breeding for host resistance to mycotoxin contamination. In: Abbas HK (ed) Aflatoxin and food safety. CRC, Boca Raton, pp 423–426

    Google Scholar 

  • Leon-Reyes A, Van der Does D, De Lange ES, Delker C, Wasternack C et al (2010) Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta (Berlin) 232:1423–1432

    Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    PubMed  CAS  Google Scholar 

  • Lindsay JA (1997) Chronic sequelae of foodborne disease. Emerg Infect Dis 3:443–452

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Tang W-H, Zhao X-M, Chen L (2010) A network approach to predict pathogenic genes for Fusarium graminearum. PLoS ONE 5(10):e13021 doi:10.1371/journal.pone.0013021

    Article  PubMed  CAS  Google Scholar 

  • Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    Article  PubMed  CAS  Google Scholar 

  • Matilla MA et al (2010) Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation. Environ Microbiol Rep 2:381–388

    Article  CAS  Google Scholar 

  • McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81:1340–1348

    Article  Google Scholar 

  • McSteen P, Zhao Y (2008) Plant hormones and signaling: Common themes and new developments. Developmental Cell 14:467–473

    Google Scholar 

  • Memelink J (2009) Regulation of gene expression by jasmonate hormones. Phytochemistry 70:1560–1570

    Article  PubMed  CAS  Google Scholar 

  • Mendes R et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  PubMed  CAS  Google Scholar 

  • Michielse CB, Rep M (2009) Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol 10:311–324

    Article  PubMed  CAS  Google Scholar 

  • Michielse CB, van Wijk R, Reijnen L, Cornelissen BJC, Rep M (2009) Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis. Genome Biol 10(1):R4. (ISSN 14656906)

    Google Scholar 

  • Morales SE, Holben WE (2011) Linking bacterial identities and ecosystem processes: can ‘omic’ analyses be more than the sum of their parts? FEMS Microbiol Ecol 75:2–16

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30(2):194–200

    Article  PubMed  CAS  Google Scholar 

  • Mule G, Gonzalez-Jaen MT, Hornok L, Nicholson P, Waalwijk C (2005) Advances in molecular diagnosis of toxigenic Fusarium species: a review. Food Addit Contam 22:316–323

    Article  PubMed  CAS  Google Scholar 

  • Munkvold GP, McGee DC, Carlton WM (1997) Importance of different pathways for maize kernel infection by Fusarium moniliforme. Phytopathology 87:209–217

    Article  PubMed  CAS  Google Scholar 

  • Murphy M, Armstrong D (1995) Fusariosis in patients with neoplastic disease. Infect Med 12:66–67

    Google Scholar 

  • Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262

    Google Scholar 

  • Nayaka SC, Wulff EG, Udayashankar AC, Nandini BP, Niranjana SR, Mortensen CN, Prakash HS (2011) Prospects of molecular markers in Fusarium species diversity. Appl Microbiol Biotechnol 90:1625–1639

    Article  CAS  Google Scholar 

  • NCBI Basic Local Alignment and Search Tool. http://www.ncbi.nlm.nih.gov/BLAST/

  • NCBI Expressed Sequence Tags Database. http://www.ncbi.nlm.nih.gov/dbEST/

  • Oberhardt MA et al (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320

    Article  PubMed  Google Scholar 

  • O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116

    Article  PubMed  Google Scholar 

  • O’Donnell K, Cigelnik E, Nirenberg HI (1998) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90:465–493

    Article  Google Scholar 

  • O’Donnell K, Kistler HC, Tacke BK, Casper HH (2000) Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci U S A 97:7905–7910

    Article  PubMed  Google Scholar 

  • O’Donnell K, Sutton DA, Rinaldi MG, Magnon KC, Cox PA, Revankar SG et al (2004) Genetic diversity of human pathogenic members of the Fusarium oxysporum complex inferred from multilocus DNA sequence data and amplified fragment length polymorphism analyses: evidence for the recent dispersion of a geographically widespread clonal lineage and nosocomial origin. J Clin Microbiol 42:5109–5120

    Article  PubMed  CAS  Google Scholar 

  • Parker IM, Gregory SG (2004) The evolutionary ecology of novel plant-pathogen interactions. Annu Rev Ecol Syst 35:675–700

    Article  Google Scholar 

  • Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross species amplification of soybean (Glycine max) simple sequence repeat (SSRs) within the genus and other legume genera: implication for transferability of SSRs in plants. Mol Biol Evol 15:1275–1287

    Article  PubMed  CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Dicke M (2007) Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci 12:564–569

    Google Scholar 

  • Pieterse CMJ et al (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  PubMed  CAS  Google Scholar 

  • Polesani M, Desario F, Ferrarini A, Zamboni A, Pezzotti M, Kortekamp A, Polverari A (2008) c-DNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola. BMC Genomics 9:142–153

    Article  PubMed  CAS  Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Google Scholar 

  • Power W, Machray GC, Povran J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Google Scholar 

  • Proctor RH, Desjardins AE, Brown DW, McCormick SP, Butchko RAE, Alexander N, Busman M (2006) Biosynthesis of Fusarium mycotoxins and genomics of Fusarium verticillioides. Mycotoxin Res 22(2):75–78

    Google Scholar 

  • Puthoff DP, Holzer FM, Perring TM, Walling LL (2010) Tomato pathogenesis-related protein genes are expressed in response to Trialeurodes vaporiorium and Bemisia tabaci type B feeding. J Chem Ecol 36:1271–1285

    Google Scholar 

  • Raghavendra AS et al (2010) ABA perception and signaling. Trends Plant Sci 15:395–401

    Article  PubMed  CAS  Google Scholar 

  • Richards RI, Sutherland GR (1992) Heritable unstable DNA sequences. Nat Genet 1:7–9

    Article  PubMed  CAS  Google Scholar 

  • Roa AC, Chavarriaga-Aguirre P, Duque MC, Maya MM, Bonierbale MW, Iglesias C, Tohme J (2000) Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. Am J Bot 87:1647–1655

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Hernandez AM, Gosalvez B, Sempere RN, Burgos L, Arnada MA, Truniger V (2012) Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. Mol Plant Pathol 13(7):755–763

    Article  PubMed  CAS  Google Scholar 

  • Roh SW, Abell GC, Kim KH, Nam YD, Bae JW (2010) Comparing microarrays and next-generation sequencing technologies for microbial ecology research. Trends Biotechnol 28:291–299

    Article  PubMed  CAS  Google Scholar 

  • Rosewich UL, Pettway RE, Katan T, Kistler HC (1999) Population genetic analysis corroborates dispersal of Fusarium oxysporum f. sp radicis-lycopersici from Florida to Europe. Phytopathology 89:623–630

    Article  PubMed  CAS  Google Scholar 

  • Saha MC, Mian MA, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791

    Article  PubMed  Google Scholar 

  • Sestili S, Polverari A, Luongo L, Ferrarini A, Scotton M, Hussain J, Delledonne M, Ficcadenti N, Belisario A (2011) Distinct colonization patterns and cDNA-AFLP transcriptome profiles in compatible and incompatible interactions between melon and different races of Fusarium oxysporum f. sp. melonis. BMC Genomics 12:122. doi:10.1186/1471-2164-12-122

    Google Scholar 

  • Schenk PM, Carvalhais LC, Kazan K (2012) Unravelling plant–microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30(3):177–184

    Article  PubMed  CAS  Google Scholar 

  • Schwessinger B, Ronald PC (2012) Plant innate immunity: perception of conserved microbial signatures. Ann Rev Plant Biol 63:451–482

    Article  CAS  Google Scholar 

  • Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726

    Article  CAS  Google Scholar 

  • Seefelder W, Humpf H-U, Schwerdt G, Freudinger R, Gekle M (2003) Induction of apoptosis in cultured human proximal tubule cells by fumonisins and fumonisin metabolites. Toxicol Appl Pharmacol 192:146–153

    Article  PubMed  CAS  Google Scholar 

  • Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161

    Article  PubMed  CAS  Google Scholar 

  • Sims JW, Fillmore JP, Warner DD, Schmidt EW (2005) Equisetin biosynthesis in Fusarium heterosporum. Chem Commun 186–188

    Google Scholar 

  • Stewart F et al (2010) Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics. ISME J 4:896–907

    Article  PubMed  CAS  Google Scholar 

  • Stout MJ, Thaler JS, Thomma B (2006) Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Ann Rev Entomol 51:663–689

    Google Scholar 

  • Szafranska K, Fusari F, Luongo L, Ferrarini A, Polverari A, Delledonne M, Ficcadenti N, Sestili S, Belisario A (2008) Fusarium wilt infection in melon: a transcriptomic approach to characterize the genetic dialogue between host and pathogen. In: Pitrat M (ed) Cucurbitaceae 2008, Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, Avignon, France, pp 615–619

    Google Scholar 

  • Takken F, Rep M (2010) The arms between tomato and Fusarium oxysporum. Mol Plant Pathol 11:309–314

    Article  PubMed  CAS  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (O. sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed  CAS  Google Scholar 

  • Thaler JS, Bostock RM (2004) Interactions between abscisicacid-mediated responses and plant resistance to pathogens and insects. Ecology 85:48–58

    Article  Google Scholar 

  • Thaler JS, Agrawal AA, Halitschke R (2010) Salicylate-mediated interactions between pathogens and herbivores. Ecology 91:1075–1082

    Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    PubMed  CAS  Google Scholar 

  • Tian CF, Garnerone A-M, Mathieu-Demazière C, Masson-Boivin C, Batut J (2012) Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti–Medicago symbiosis. PNAS 109(17):6751–6756

    Article  PubMed  CAS  Google Scholar 

  • Torben A, Ursula KF, Thomas D, Klaus KN, Thomas L (2007) Frequency, type, and distribution of EST-SSRs from three genotypes of Lolium perenne, and their conservation across orthologous sequences of Festuca arundinacea, Brachypodium distachyon, and Oryza sativa. BMC Plant Biol 7:36

    Article  CAS  Google Scholar 

  • Trail F, Common R (2000) Perithecial development by Gibberella zeae: a light microscopy study. Mycologia 92:130–138

    Article  Google Scholar 

  • Trewavas A (2009) What is plant behavior? Plant Cell Environ 32:606–616

    Article  PubMed  Google Scholar 

  • UniProtKB Swiss-Prot and TrEMBL. http://www.expasy.ch/sprot/databases

  • Varshney RK, Graner A, Sorrells ME (2005a) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55

    Article  CAS  Google Scholar 

  • Varshney RK, Sigmund R, Boerner A, Korzun V, Stein N, Sorrells ME, Langridge P, Graner A (2005b) Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye, and rice. Plant Sci 168:195–202

    Article  CAS  Google Scholar 

  • Verhage A, van Wees SCM, Pieterse CMJ (2010) Plant immunity: It’s the hormones talking, but what do they say? Plant Physiol 154:536–540

    Google Scholar 

  • Voge C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232

    Google Scholar 

  • Vuylsteke M, Peleman JD, van Eijk MJT (2007) AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis. Nat Protoc 2:1399–1413

    Article  PubMed  CAS  Google Scholar 

  • Walling LL (2009) Adaptive defense responses to pathogens and pests. Adv Bot Res 51:551–612

    Google Scholar 

  • Wang X, Tang C, Zhang G, Li Y, Wang C, Liu B, Qu Z, Zhao J, Han Q, Huang L, Chen X, Kang Z (2009) cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici. BMC Genomics 10:289

    Article  PubMed  CAS  Google Scholar 

  • Weber JL (1990) Informativeness of human (dC-dA)n, (dG-dT)n polymorphisms. Genomics 7:524–530

    Article  PubMed  CAS  Google Scholar 

  • Webster RK, Gunnell PS (1992) Compendium of rice diseases. APS Press, The American Phytopathological Society, St. Paul

    Google Scholar 

  • White DG (1999) Compendium of corn diseases. APS Press, The American Phytopathological Society, St. Paul

    Google Scholar 

  • White G, Powell W (1997) Isolation and characterization of microsatellite loci in Swietenia humilis (Meliaceae): an endangered tropical hardwood species. Mol Ecol 6:851–860

    Article  CAS  Google Scholar 

  • Wierdl M, Dominska M, Petes TD (1997) Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146:769–779

    PubMed  CAS  Google Scholar 

  • Wilson TM, Ross PF, Owens DL, Rice LG, Green SA, Jenkins SJ, Nelson HA (1992) Experimental reproduction of ELEM—a study to determine the minimum toxic dose in ponies. Mycopathologia 117:115–120

    Article  PubMed  CAS  Google Scholar 

  • Windels, CE (2000) Economic and social impacts of Fusarium head blight: changing farms and rural communities in the northern great plains. Phytopathology 90:17–21

    Article  PubMed  CAS  Google Scholar 

  • Wise RP, Moscou MJ, Bogdanove AJ, Whitham SA (2007) Transcript profiling in host–pathogen interactions. Annu Rev Phytopathol 45:329–369

    Article  PubMed  CAS  Google Scholar 

  • Wulff EG, Sørensen JS, Lübeck M, Nielsen KF, Thrane U, Torp J (2010) Fusarium spp. associated with rice Bakanae: ecology, genetic diversity, pathogenicity and toxigenicity. Environ Microbiol 12:649–657

    Article  PubMed  Google Scholar 

  • Wurtzel O, Sesto N, Mellin JR, Karunker I, Edelheit S, Bécavin C, Archambaud C, Cossart P, Sorek R (2012) Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Mol Syst Biol 8:583

    Article  PubMed  CAS  Google Scholar 

  • Yao DX et al (2011) Transcriptome analysis reveals salt-stress regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics 98:47–55

    PubMed  CAS  Google Scholar 

  • Yli-Mattila T, Gagkaeva T (2010) Molecular chemotyping of Fusarium gramineaum, F. culmorum and F. cerealis isolates from Finland and Russia. In: Gherbawy Y, Voigt K (eds) Molecular identification of fungi. Springer, Berlin, pp 159–178

    Chapter  Google Scholar 

  • Yli-Mattila T, Paavanen-Huhtala S, Bulat SA, Alekhina IA, Nirenberg HI (2002) Molecular, morphological and phylogenetic analysis of the Fusarium avenaceum/F. arthrosporioides/F. tricinctum species complex a polyphasic approach. Mycol Res 106:655–669

    Article  CAS  Google Scholar 

  • Zabala MD et al (2009) Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defense responses. Plant J 59:375–386

    Article  CAS  Google Scholar 

  • Zabalgogeazcoa I (2008) Fungal endophytes and their interaction with plant pathogens. Span J Agric Res 6:138–146

    Google Scholar 

  • Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866–875

    Google Scholar 

  • Zeller KA, Summerall BA, Ballock S, Leslie JF (2003) Gibberella konza (Fusarium konzum) sp. nov. from prairie grasses, a new species in the Gibberella fujikuroi species complex. Mycologia 95:943–954

    Article  PubMed  Google Scholar 

  • Zhang PJ, Zheng SJ, van Loon JJA, Boland W, David A et al (2009) Whiteflies interfere with indirect plant defense against spider mites in Lima bean. P Natl Acad Sci USA 106:21202–21207

    Google Scholar 

  • Zhao XM, Tang W, Chen L (2008a) Motif based identification of pathogenic patterns for filamentous fungi. The second international symposium on optimization and systems biology, pp 115–122

    Google Scholar 

  • Zhao XM, Wang RS, Chen L, Aihara K (2008b) Uncovering signal transduction networks from high-throughput data by integer linear programming. Nucleic Acids Res 36:e48–e48

    Article  CAS  Google Scholar 

  • Zhao XM, Wang Y, Chen L, Aihara K (2008c) Gene function prediction using labeled and unlabeled data. BMC Bioinformatics 9:57

    Article  CAS  Google Scholar 

  • Zhao XM, Zhang XW, Tang WH, Chen L (2009) FPPI: Fusarium graminearum protein–protein interaction database. J Proteome Res 8:4714–4721

    Article  PubMed  CAS  Google Scholar 

  • Zhao ZX et al (2010) ABA-regulated G protein signaling in Arabidopsis guard cells: a proteomic perspective. J Proteome Res 9:1637–1647

    Article  PubMed  CAS  Google Scholar 

  • Zvirin T, Herman R, Brotman Y, Denisov Y, Belausov E, Freeman S, Perl- Treves R (2010) Differential colonization and defense responses of resistant and susceptible melon lines infected by Fusarium oxysporum race 1–2. Plant Pathol 59:576–585

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiaz ul Rehman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

ul Rehman, R., Hakeem, K., Tahir, I., Padder, B., Shah, M., Teli, M. (2013). Variability in Fusarium species Causing Wilt Disease in Crops: A Transcriptomic Approach to Characterize Dialogue Between Host and Pathogen. In: Hakeem, K., Ahmad, P., Ozturk, M. (eds) Crop Improvement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7028-1_8

Download citation

Publish with us

Policies and ethics