Skip to main content

Coding for Control and Connections with Information Theory

  • Chapter
  • First Online:
Stochastic Networked Control Systems

Part of the book series: Systems & Control: Foundations & Applications ((SCFA))

  • 2356 Accesses

Abstract

This chapter introduces policies and actions regarding the selection of quantizers and controllers in networked control. It exhibits the important differences between the real-time communication formulation and the traditional Shannon theoretic setup which allows for large blocks of data (with unbounded block-length) to be encoded and transmitted. This distinction is highlighted in the context of distortion-constrained quantizer design and the rate-distortion theory. The chapter also establishes fundamental lower bounds on information rates needed for various forms of stochastic stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baillieul, J.: Feedback designs for controlling device arrays with communication channel bandwidth constraints. In: 4th ARO Workshop on Smart Structures, State College, PA, August 1999

    Google Scholar 

  2. Berger, T.: Information rates of Wiener processes. IEEE Trans. Inf. Theor. 16, 134–139 (1970)

    Article  MATH  Google Scholar 

  3. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  4. Csiszar, I., Korner, J.: Information Theory: Coding Theorems for Discrete Memoryless Channels. Akademiai Kiado, Budapest (1981)

    MATH  Google Scholar 

  5. Flynn, T.J., Gray, R.M.: Encoding of correlated observations. IEEE Trans. Inf. Theor. 33, 773–787 (1987)

    Article  MathSciNet  Google Scholar 

  6. Gaarder, N., Slepian, D.: On optimal finite-state digital transmission systems. IEEE Trans. Inf. Theor. 28, 167–186 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gastpar, M., Rimoldi, B., Vetterli, M.: To code, or not to code: Lossy source-channel communication revisited. IEEE Trans. Inf. Theor. 49, 1147–1158 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gish, H., Pierce, J.N.: Asymptotically efficient quantization. IEEE Trans. Inf. Theor. 14, 676–683 (1968)

    Article  Google Scholar 

  9. Goodman, D.J., Gersho, A.: Theory of an adaptive quantizer. IEEE Trans. Commun. 22, 1037–1045 (1974)

    Article  Google Scholar 

  10. Gray, R.M.: Information rates of autoregressive processes. IEEE Trans. Inf. Theor. 16, 412–421 (1970)

    Article  MATH  Google Scholar 

  11. Gray, R.M.: Entropy and Information Theory. Springer, New York (1990)

    Book  MATH  Google Scholar 

  12. Gray, R.M., Hashimoto, T.: A note on rate-distortion functions for nonstationary Gaussian autoregressive processes. IEEE Trans. Inf. Theor. 54, 1319–1322 (2008)

    Article  MathSciNet  Google Scholar 

  13. Gray, R.M., Neuhoff, D.L.: Quantization. IEEE Trans. Inf. Theor. 44, 2325–2383 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. György, A., Linder, T.: Optimal entropy-constrained scalar quantization of a uniform source. IEEE Trans. Inf. Theor. 46, 2704–2711 (2000)

    Article  MATH  Google Scholar 

  15. György, A., Linder, T., Chou, P.A., Betts, B.J.: Do optimal entropy constrained quantizers have a finite or infinite number of codewords? IEEE Trans. Inf. Theor. 49, 3031–3037 (2003)

    Article  Google Scholar 

  16. György, A., Linder, T., Lugosi, G.: Tracking the best quantizer. IEEE Trans. Inf. Theor. 54, 1604–1625 (2008)

    Article  Google Scholar 

  17. Hashimoto, T., Arimoto, S.: On the rate-distortion function for the nonstationary Gaussian autoregressive process. IEEE Trans. Inf. Theor. 26, 478–480 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kieffer, J.C.: Stochastic stability for feedback quantization schemes. IEEE Trans. Inf. Theor. 28, 248–254 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kieffer, J.C., Dunham, J.G.: On a type of stochastic stability for a class of encoding schemes. IEEE Trans. Inf. Theor. 29, 793–797 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Linder, T., Zamir, R.: Causal coding of stationary sources and individual sequences with high resolution. IEEE Trans. Inf. Theor. 52, 662–680 (2006)

    Article  MathSciNet  Google Scholar 

  21. Mahajan, A., Teneketzis, D.: Optimal performance of networked control systems with non-classical information structures. SIAM J. Control Optim. 48, 1377–1404 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Massey, J.L.: Causality, feedback and directed information. In: IEEE International Symposium on Information Theory, pp. 303–305, Waikiki, Hawaii, 1990

    Google Scholar 

  23. Nair, G.N., Evans, R.J.: Stabilizability of stochastic linear systems with finite feedback data rates. SIAM J. Control Optim. 43, 413–436 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Neuhoff, D.L., Gilbert, R.K.: Causal source codes. IEEE Trans. Inf. Theor. 28, 701–713 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pradhan, S.S., Ramchandran, K.: Distributed source coding using syndromes (discus): design and construction. IEEE Trans. Inf. Theor. 49, 626–643 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sahai, A.: Coding unstable scalar Markov processes into two streams. In: Proceedings of the IEEE International Symposium on Information Theory, p. 462, 2004

    Google Scholar 

  27. Sahai, A., Mitter, S.: The necessity and sufficiency of anytime capacity for stabilization of a linear system over a noisy communication link part I: Scalar systems. IEEE Trans. Inf. Theor. 52(8), 3369–3395 (2006)

    Article  MathSciNet  Google Scholar 

  28. Schutzenberger, M.P.: On the quantization of finite-dimensional messages. Inf. Control 1, 153–158 (1958)

    Article  MathSciNet  Google Scholar 

  29. Tatikonda, S.: Control under communication constraints. Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA (2000)

    Google Scholar 

  30. Tatikonda, S., Mitter, S.: Control under communication constraints. IEEE Trans. Autom. Control 49(7), 1056–1068 (2004)

    Article  MathSciNet  Google Scholar 

  31. Tatikonda, S., Mitter, S.: Control under communication constraints. IEEE Trans. Autom. Control 49(7), 1056–1068 (2004)

    Article  MathSciNet  Google Scholar 

  32. Teneketzis, D.: Communication in decentralized control. Ph.D. Dissertation, M.I.T. (1979)

    Google Scholar 

  33. Teneketzis, D.: On the structure of optimal real-time encoders and decoders in noisy communication. IEEE Trans. Inf. Theor. 52, 4017–4035 (2006)

    Article  MathSciNet  Google Scholar 

  34. Vembu, S., Verdú, S., Steinberg, Y.: The source-channel separation theorem revisited. IEEE Trans. Inf. Theor. 41, 44–54 (1995)

    Article  MATH  Google Scholar 

  35. Verdú, S., Han, T.S.: A general formula for channel capacity. IEEE Trans. Inf. Theor. 40, 1147–1157 (1994)

    Article  MATH  Google Scholar 

  36. Walrand, J.C., Varaiya, P.: Optimal causal coding-decoding problems. IEEE Trans. Inf. Theor. 19, 814–820 (1983)

    Article  MathSciNet  Google Scholar 

  37. Witsenhausen, H.S.: On the structure of real-time source coders. Bell Syst. Tech. J. 58, 1437–1451 (1979)

    MATH  Google Scholar 

  38. Wong, P.W., Gray, R.M.: Sigma-delta modulation with i.i.d. Gaussian inputs. IEEE Trans. Inf. Theor. 36, 784–778 (1990)

    Google Scholar 

  39. Wong, W.S., Brockett, R.W.: Systems with finite communication bandwidth constraints - part ii: Stabilization with limited information feedback. IEEE Trans. Autom. Control 42, 1294–1299 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yüksel, S.: Stochastic stabilization of noisy linear systems with fixed-rate limited feedback. IEEE Trans. Autom. Control 55, 2847–2853 (2010)

    Article  Google Scholar 

  41. Yüksel, S.: Stochastic stability and ergodicity of linear Gaussian systems controlled over discrete channels. In: Proceedings of the IEEE Conference on Decision and Control, pp. 4680–4685, Florida, USA, 2011

    Google Scholar 

  42. Yüksel, S.: A tutorial on quantizer design for networked control systems: Stabilization and optimization. Appl. Comput. Math. 11, 365–403 (2011)

    Google Scholar 

  43. Yüksel, S.: Characterization of information channels for asymptotic mean stationarity and stochastic stability of non-stationary/unstable linear systems. IEEE Trans. Inf. Theor. 58, 6332–6354 (2012)

    Article  Google Scholar 

  44. Yüksel, S.: On optimal causal coding of partially observed Markov sources in single and multi-terminal settings. IEEE Trans. Inf. Theor. 59, 424–437 (2013)

    Article  Google Scholar 

  45. Yüksel, S., Başar, T.: Minimum rate coding for LTI systems over noiseless channels. IEEE Trans. Autom. Control 51(12), 1878–1887 (2006)

    Article  Google Scholar 

  46. Yüksel, S., Başar, T.: Communication constraints for decentralized stabilizability with time-invariant policies. IEEE Trans. Autom. Control 52, 1060–1066 (2007)

    Article  Google Scholar 

  47. Yüksel, S., Başar, T.: Optimal signaling policies for decentralized multi-controller stabilizability over communication channels. IEEE Trans. Autom. Control 52, 1969–1974 (2007)

    Article  Google Scholar 

  48. Zador, P.: Asymptotic quantization error of continuous signals and the quantization dimension. IEEE Trans. Inf. Theor. 28, 139–148 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yüksel, S., Başar, T. (2013). Coding for Control and Connections with Information Theory. In: Stochastic Networked Control Systems. Systems & Control: Foundations & Applications. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-7085-4_5

Download citation

Publish with us

Policies and ethics